Minimum number of elements that should be removed to make the array good

Given an array arr[], the task is to find the minimum number of elements that must be removed to make the array good. A sequence a1, a2 … an is called good if for each element ai, there exists an element aj (i not equals to j) such that ai + aj is a power of two i.e. 2d for some non-negative integer d.

Examples:

Input: arr[] = {4, 7, 1, 5, 4, 9}
Output: 1
Remove 5 from the array to make the array good.

Input: arr[] = {1, 3, 1, 1}
Output: 0



Approach: We should delete only such ai for which there is no aj (i not equals to j) such that ai + aj is a power of 2.
For each value let’s find the number of its occurrences in the array. We can use the map data-structure.

Now we can easily check that ai doesn’t have a pair aj. Let’s iterate over all possible sums, S = 20, 21, …, 230 and for each S calculate S – a[i] whether it exists in the map.

Below is the implementation of the above approach :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the minimum number
// of elements that must be removed
// to make the given array good
int minimumRemoval(int n, int a[])
{
  
    map<int, int> c;
  
    // Count frequency of each element
    for (int i = 0; i < n; i++)
        c[a[i]]++;
  
    int ans = 0;
  
    // For each element check if there
    // exists another element that makes
    // a valid pair
    for (int i = 0; i < n; i++) {
        bool ok = false;
        for (int j = 0; j < 31; j++) {
            int x = (1 << j) - a[i];
            if (c.count(x) && (c[x] > 1
                       || (c[x] == 1 && x != a[i]))) {
                ok = true;
                break;
            }
        }
  
        // If does not exist then
        // increment answer
        if (!ok)
            ans++;
    }
  
    return ans;
}
  
// Driver code
int main()
{
    int a[] = { 4, 7, 1, 5, 4, 9 };
    int n = sizeof(a) / sizeof(a[0]);
    cout << minimumRemoval(n, a);
  
    return 0;
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to return the minimum number 
# of elements that must be removed 
# to make the given array good 
def minimumRemoval(n, a) :
  
    c = dict.fromkeys(a, 0);
  
    # Count frequency of each element 
    for i in range(n) :
        c[a[i]] += 1
  
    ans = 0
  
    # For each element check if there 
    # exists another element that makes 
    # a valid pair 
    for i in range(n) :
        ok = False
        for j in range(31) :
              
            x = (1 << j) - a[i]; 
            if (x in c and (c[x] > 1 or 
               (c[x] == 1 and x != a[i]))) :
                  
                ok = True
                break;
  
        # If does not exist then 
        # increment answer 
        if (not ok) :
            ans += 1
              
    return ans; 
  
# Driver Code
if __name__ == "__main__" :
      
    a = [ 4, 7, 1, 5, 4, 9 ]; 
    n = len(a) ; 
      
    print(minimumRemoval(n, a));
      
# This code is contributed by Ryuga

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System.Linq;
using System;
  
class GFG
{
// Function to return the minimum number
// of elements that must be removed
// to make the given array good
static int minimumRemoval(int n, int []a)
{
  
    int[] c = new int[1000];
  
    // Count frequency of each element
    for (int i = 0; i < n; i++)
        c[a[i]]++;
  
    int ans = 0;
  
    // For each element check if there
    // exists another element that makes
    // a valid pair
    for (int i = 0; i < n; i++) 
    {
        bool ok = true;
        for (int j = 0; j < 31; j++) 
        {
            int x = (1 << j) - a[i];
            if (c.Contains(x) && (c[x] > 1 ||
                    (c[x] == 1 && x != a[i]))) 
            {
                ok = false;
                break;
            }
        }
  
        // If does not exist then
        // increment answer
        if (!ok)
            ans++;
    }
  
    return ans;
}
  
// Driver code
static void Main()
{
    int []a = { 4, 7, 1, 5, 4, 9 };
    int n = a.Length;
    Console.WriteLine(minimumRemoval(n, a));
}
}
  
// This code is contributed by mits

chevron_right


Output:

1


My Personal Notes arrow_drop_up

pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Ryuga, Mithun Kumar