Given an array of n integers. The task is to remove or delete the minimum number of elements from the array so that when the remaining elements are placed in the same sequence order to form an increasing sorted sequence.
Examples :
Input : {5, 6, 1, 7, 4} Output : 2 Removing 1 and 4 leaves the remaining sequence order as 5 6 7 which is a sorted sequence. Input : {30, 40, 2, 5, 1, 7, 45, 50, 8} Output : 4
A simple solution is to remove all subsequences one by one and check if remaining set of elements are in sorted order or not. Time complexity of this solution is exponential.
An efficient approach uses the concept of finding the length of the longest increasing subsequence of a given sequence.
Algorithm:
-->arr be the given array. -->n number of elements in arr. -->len be the length of longest increasing subsequence in arr. -->// minimum number of deletions min = n - len
C++
// C++ implementation to find // minimum number of deletions // to make a sorted sequence #include <bits/stdc++.h> using namespace std; /* lis() returns the length of the longest increasing subsequence in arr[] of size n */ int lis( int arr[], int n ) { int result = 0; int lis[n]; /* Initialize LIS values for all indexes */ for ( int i = 0; i < n; i++ ) lis[i] = 1; /* Compute optimized LIS values in bottom up manner */ for ( int i = 1; i < n; i++ ) for ( int j = 0; j < i; j++ ) if ( arr[i] > arr[j] && lis[i] < lis[j] + 1) lis[i] = lis[j] + 1; /* Pick resultimum of all LIS values */ for ( int i = 0; i < n; i++ ) if (result < lis[i]) result = lis[i]; return result; } // function to calculate minimum // number of deletions int minimumNumberOfDeletions( int arr[], int n) { // Find longest increasing // subsequence int len = lis(arr, n); // After removing elements // other than the lis, we // get sorted sequence. return (n - len); } // Driver Code int main() { int arr[] = {30, 40, 2, 5, 1, 7, 45, 50, 8}; int n = sizeof (arr) / sizeof (arr[0]); cout << "Minimum number of deletions = " << minimumNumberOfDeletions(arr, n); return 0; } |
Java
// Java implementation to find // minimum number of deletions // to make a sorted sequence class GFG { /* lis() returns the length of the longest increasing subsequence in arr[] of size n */ static int lis( int arr[], int n ) { int result = 0 ; int [] lis = new int [n]; /* Initialize LIS values for all indexes */ for ( int i = 0 ; i < n; i++ ) lis[i] = 1 ; /* Compute optimized LIS values in bottom up manner */ for ( int i = 1 ; i < n; i++ ) for ( int j = 0 ; j < i; j++ ) if ( arr[i] > arr[j] && lis[i] < lis[j] + 1 ) lis[i] = lis[j] + 1 ; /* Pick resultimum of all LIS values */ for ( int i = 0 ; i < n; i++ ) if (result < lis[i]) result = lis[i]; return result; } // function to calculate minimum // number of deletions static int minimumNumberOfDeletions( int arr[], int n) { // Find longest // increasing subsequence int len = lis(arr, n); // After removing elements // other than the lis, we get // sorted sequence. return (n - len); } // Driver Code public static void main (String[] args) { int arr[] = { 30 , 40 , 2 , 5 , 1 , 7 , 45 , 50 , 8 }; int n = arr.length; System.out.println( "Minimum number of" + " deletions = " + minimumNumberOfDeletions(arr, n)); } } /* This code is contributed by Harsh Agarwal */ |
Python3
# Python3 implementation to find # minimum number of deletions to # make a sorted sequence # lis() returns the length # of the longest increasing # subsequence in arr[] of size n def lis(arr, n): result = 0 lis = [ 0 for i in range (n)] # Initialize LIS values # for all indexes for i in range (n): lis[i] = 1 # Compute optimized LIS values # in bottom up manner for i in range ( 1 , n): for j in range (i): if ( arr[i] > arr[j] and lis[i] < lis[j] + 1 ): lis[i] = lis[j] + 1 # Pick resultimum # of all LIS values for i in range (n): if (result < lis[i]): result = lis[i] return result # Function to calculate minimum # number of deletions def minimumNumberOfDeletions(arr, n): # Find longest increasing # subsequence len = lis(arr, n) # After removing elements # other than the lis, we # get sorted sequence. return (n - len ) # Driver Code arr = [ 30 , 40 , 2 , 5 , 1 , 7 , 45 , 50 , 8 ] n = len (arr) print ( "Minimum number of deletions = " , minimumNumberOfDeletions(arr, n)) # This code is contributed by Anant Agarwal. |
C#
// C# implementation to find // minimum number of deletions // to make a sorted sequence using System; class GfG { /* lis() returns the length of the longest increasing subsequence in arr[] of size n */ static int lis( int []arr, int n ) { int result = 0; int [] lis = new int [n]; /* Initialize LIS values for all indexes */ for ( int i = 0; i < n; i++ ) lis[i] = 1; /* Compute optimized LIS values in bottom up manner */ for ( int i = 1; i < n; i++ ) for ( int j = 0; j < i; j++ ) if ( arr[i] > arr[j] && lis[i] < lis[j] + 1) lis[i] = lis[j] + 1; /* Pick resultimum of all LIS values */ for ( int i = 0; i < n; i++ ) if (result < lis[i]) result = lis[i]; return result; } // function to calculate minimum // number of deletions static int minimumNumberOfDeletions( int []arr, int n) { // Find longest increasing // subsequence int len = lis(arr, n); // After removing elements other // than the lis, we get sorted // sequence. return (n - len); } // Driver Code public static void Main (String[] args) { int []arr = {30, 40, 2, 5, 1, 7, 45, 50, 8}; int n = arr.Length; Console.Write( "Minimum number of" + " deletions = " + minimumNumberOfDeletions(arr, n)); } } // This code is contributed by parashar. |
PHP
<?php // PHP implementation to find // minimum number of deletions // to make a sorted sequence /* lis() returns the length of the longest increasing subsequence in arr[] of size n */ function lis( $arr , $n ) { $result = 0; $lis [ $n ] = 0; /* Initialize LIS values for all indexes */ for ( $i = 0; $i < $n ; $i ++ ) $lis [ $i ] = 1; /* Compute optimized LIS values in bottom up manner */ for ( $i = 1; $i < $n ; $i ++ ) for ( $j = 0; $j < $i ; $j ++ ) if ( $arr [ $i ] > $arr [ $j ] && $lis [ $i ] < $lis [ $j ] + 1) $lis [ $i ] = $lis [ $j ] + 1; /* Pick resultimum of all LIS values */ for ( $i = 0; $i < $n ; $i ++ ) if ( $result < $lis [ $i ]) $result = $lis [ $i ]; return $result ; } // function to calculate minimum // number of deletions function minimumNumberOfDeletions( $arr , $n ) { // Find longest increasing // subsequence $len = lis( $arr , $n ); // After removing elements // other than the lis, we // get sorted sequence. return ( $n - $len ); } // Driver Code $arr = array (30, 40, 2, 5, 1, 7, 45, 50, 8); $n = sizeof( $arr ) / sizeof( $arr [0]); echo "Minimum number of deletions = " , minimumNumberOfDeletions( $arr , $n ); // This code is contributed by nitin mittal. ?> |
Output :
Minimum number of deletions = 4
Time Complexity : O(n2)
Time Complexity can be decreased to O(nlogn) by finding the Longest Increasing Subsequence Size(N Log N)
This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.