Given a positive integer **N**, the task is to find the *minimum N-digit number* such that performing the following operations on it in the following order results into the largest N-digit number:

- Convert the number to its Binary Coded Decimal form.
- Concatenate all the resulting nibbles to form a binary number.
- Remove the
*least significant*from the number.**N**bits - Convert this obtained binary number to its decimal form.

**Examples:**

Input:N = 4Output:9990Explanation:

Largest 4 digit number = 9999

BCD of 9999 = 1001 1001 1001 1001

Binary form = 1001100110011001

Replacing last 4 bits by 0000: 1001 1001 1001 0000 = 9990

Therefore, the minimum N-digit number that can generate 9999 is 9990

Input:N = 5Output:99980Explanation:

Largest 5 digit number = 99999

BCD of 99999 = 1001 1001 1001 1001 1001

Binary for = 10011001100110011001

Replacing last 5 bits by 00000: 10011001100110000000 = 99980

Therefore, the minimum N-digit number that can generate 99999 is 99980

**Approach: **The probelm can be solved based on the following observations of BCD numbers. Follow the steps below to solve the problem:

- Each nibble in BCD does not increase beyond
**1001**which is**9**in binary form, since the maximum single digit decimal number is**9**. - Thus, it can be concluded that the maximum binary number that can be obtained by bringing
**N**nibbles together is**1001**concatenated**N**times, whose decimal representation is have to be the digit**9**concatenated**N**times. - The last
**N**LSBs from this binary form is required to be removed. Thus the values of these bits will not contribute in making the result larger. Therefore, keeping the last**N**bits as**9**is not necessary as we need the minimum number producing the maximum result. - The value of
**floor(N/4)**will give us the number of nibbles that will be completely removed from the number. Assign these nibbles the value of**0000**to minimize the number. - The remainder of
**N/4**gives us the number of digits that would be switched to**0**from the LSB of the last*non-zero nibble*after having performed the previous step. - This BCD formed by performing the above steps, when converted to decimal, generates the required maximized
**N**digit number.

Below is the implementation of the above approach:

## C++

`// C++ Program to implement` `// the above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `void` `maximizedNdigit(` `int` `n)` `{` ` ` `int` `count0s, count9s;` ` ` `// If n is divisible by 4` ` ` `if` `(n % 4 == 0) {` ` ` `count0s = n / 4;` ` ` `count9s = n - n / 4;` ` ` `}` ` ` `// Otherwise` ` ` `else` `{` ` ` `count0s = n / 4 + 1;` ` ` `count9s = n - count0s;` ` ` `count0s--;` ` ` `}` ` ` `while` `(count9s--)` ` ` `cout << ` `'9'` `;` ` ` `if` `(n % 4 != 0)` ` ` `cout << ` `'8'` `;` ` ` `while` `(count0s--)` ` ` `cout << ` `'0'` `;` ` ` `cout << endl;` `}` `// Driver Code` `int` `main()` `{` ` ` `int` `n = 5;` ` ` `maximizedNdigit(n);` `}` |

## Java

`// Java program to implement` `// the above approach` `import` `java.io.*;` `class` `GFG{` `static` `void` `maximizedNdigit(` `int` `n)` `{` ` ` `int` `count0s, count9s;` ` ` ` ` `// If n is divisible by 4` ` ` `if` `(n % ` `4` `== ` `0` `)` ` ` `{` ` ` `count0s = n / ` `4` `;` ` ` `count9s = n - n / ` `4` `;` ` ` `}` ` ` `// Otherwise` ` ` `else` ` ` `{` ` ` `count0s = n / ` `4` `+ ` `1` `;` ` ` `count9s = n - count0s;` ` ` `count0s--;` ` ` `}` ` ` `while` `(count9s != ` `0` `)` ` ` `{` ` ` `count9s--;` ` ` `System.out.print(` `'9'` `);` ` ` `}` ` ` `if` `(n % ` `4` `!= ` `0` `)` ` ` `System.out.print(` `'8'` `);` ` ` `while` `(count0s != ` `0` `)` ` ` `{` ` ` `count0s--;` ` ` `System.out.print(` `'0'` `);` ` ` `}` ` ` ` ` `System.out.println();` `}` `// Driver Code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `n = ` `5` `;` ` ` ` ` `maximizedNdigit(n);` `}` `}` `// This code is contributed by sanjoy_62` |

## Python3

`# Python3 program to implement` `# the above approach` `def` `maximizedNdigit(n):` ` ` `# If n is divisible by 4` ` ` `if` `(n ` `%` `4` `=` `=` `0` `):` ` ` `count0s ` `=` `n ` `/` `/` `4` ` ` `count9s ` `=` `n ` `-` `n ` `/` `/` `4` ` ` ` ` `# Otherwise` ` ` `else` `:` ` ` `count0s ` `=` `n ` `/` `/` `4` `+` `1` ` ` `count9s ` `=` `n ` `-` `count0s` ` ` `count0s ` `-` `=` `1` ` ` ` ` `while` `(count9s):` ` ` `print` `(` `'9'` `, end ` `=` `"")` ` ` `count9s ` `-` `=` `1` ` ` `if` `(n ` `%` `4` `!` `=` `0` `):` ` ` `print` `(` `'8'` `, end ` `=` `"")` ` ` `while` `(count0s):` ` ` `print` `(` `'0'` `, end ` `=` `"")` ` ` `count0s ` `-` `=` `1` ` ` ` ` `print` `()` `# Driver Code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` `n ` `=` `5` ` ` `maximizedNdigit(n)` `# This code is contributed by chitranayal` |

## C#

`// C# program to implement` `// the above approach` `using` `System;` `class` `GFG{` `static` `void` `maximizedNdigit(` `int` `n)` `{` ` ` `int` `count0s, count9s;` ` ` ` ` `// If n is divisible by 4` ` ` `if` `(n % 4 == 0)` ` ` `{` ` ` `count0s = n / 4;` ` ` `count9s = n - n / 4;` ` ` `}` ` ` `// Otherwise` ` ` `else` ` ` `{` ` ` `count0s = n / 4 + 1;` ` ` `count9s = n - count0s;` ` ` `count0s--;` ` ` `}` ` ` `while` `(count9s != 0)` ` ` `{` ` ` `count9s--;` ` ` `Console.Write(` `'9'` `);` ` ` `}` ` ` `if` `(n % 4 != 0)` ` ` `Console.Write(` `'8'` `);` ` ` `while` `(count0s != 0)` ` ` `{` ` ` `count0s--;` ` ` `Console.Write(` `'0'` `);` ` ` `}` ` ` ` ` `Console.WriteLine();` `}` `// Driver Code` `public` `static` `void` `Main()` `{` ` ` `int` `n = 5;` ` ` ` ` `maximizedNdigit(n);` `}` `}` `// This code is contributed by sanjoy_62` |

## Javascript

`<script>` `// JavaScript Program to implement` `// the above approach` `function` `maximizedNdigit(n)` `{` ` ` `let count0s, count9s;` ` ` `// If n is divisible by 4` ` ` `if` `(n % 4 == 0) {` ` ` `count0s = Math.floor(n / 4);` ` ` `count9s = n - Math.floor(n / 4);` ` ` `}` ` ` `// Otherwise` ` ` `else` `{` ` ` `count0s = Math.floor(n / 4) + 1;` ` ` `count9s = n - count0s;` ` ` `count0s--;` ` ` `}` ` ` `while` `(count9s--)` ` ` `document.write(` `'9'` `);` ` ` `if` `(n % 4 != 0)` ` ` `document.write(` `'8'` `);` ` ` `while` `(count0s--)` ` ` `document.write(` `'0'` `);` ` ` `document.write(` `"<br>"` `);` `}` `// Driver Code` ` ` `let n = 5;` ` ` `maximizedNdigit(n);` `// This code is contributed by Surbhi Tyagi.` `</script>` |

**Output:**

99980

**Time Complexity: **O(N)**Auxiliary Space: **O(1)

**C++ Foundation Course**for Basic to Advanced C++ and

**C++ STL Course**for foundation plus STL.