Minimum moves to reach from i to j in a cyclic string
Given a cyclic string str and two integers i and j, the task is to count the minimum number of steps required to move from str[i] to str[j]. A move is to reach any adjacent character in the string and the move is only counted if str[start] != start[end] where start is the starting index for the move and end is the ending (adjacent either on the left or on the right) index. Since, the given string is circular, str[0] and str[n – 1] are adjacent to each other.
Examples:
Input: str = “SSNSS”, i = 0, j = 3
Output: 0
From left to right : S -> S -> N -> S
From right to left : S -> S -> SInput: str = “geeksforgeeks”, i = 0, j = 3
Output: 2
Approach:
- Starting from index i start moving in the right direction till index j and for every character visited, if the current character is not equal to the previous character then increment steps1 = steps1 + 1.
- Similarly, starting from i start moving in the left direction till index 0 and for every character visited, if the current character is not equal to the previous character then increment steps2 = steps2 + 1. Once the index 0 is visited, start traversing from index n – 1 to j and increment step2 if str[0] != str[n – 1].
- Print min(step1, step2) in the end.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the count of steps // required to move from i to j int getSteps(string str, int i, int j, int n) { // Starting from i + 1 int k = i + 1; // Count of steps int steps = 0; // Current character char ch = str[i]; while (k <= j) { // If current character is different from previous if (str[k] != ch) { // Increment steps steps++; // Update current character ch = str[k]; } k++; } // Return total steps return steps; } // Function to return the minimum number of steps // required to reach j from i int getMinSteps(string str, int i, int j, int n) { // Swap the values so that i <= j if (j < i) { int temp = i; i = j; j = temp; } // Steps to go from i to j (left to right) int stepsToRight = getSteps(str, i, j, n); // While going from i to j (right to left) // First go from from i to 0 // then from (n - 1) to j int stepsToLeft = getSteps(str, 0, i, n) + getSteps(str, j, n - 1, n); // If first and last character is different // then it'll add a step to stepsToLeft if (str[0] != str[n - 1]) stepsToLeft++; // Return the minimum of two paths return min(stepsToLeft, stepsToRight); } // Driver code int main() { string str = "SSNSS" ; int n = str.length(); int i = 0, j = 3; cout << getMinSteps(str, i, j, n); return 0; } |
Java
// Java implementation of the approach class GFG { // Function to return the count of steps // required to move from i to j static int getSteps(String str, int i, int j, int n) { // Starting from i + 1 int k = i + 1 ; // Count of steps int steps = 0 ; // Current character char ch = str.charAt(i); while (k <= j) { // If current character is different from previous if (str.charAt(k) != ch) { // Increment steps steps++; // Update current character ch = str.charAt(k); } k++; } // Return total steps return steps; } // Function to return the minimum number of steps // required to reach j from i static int getMinSteps(String str, int i, int j, int n) { // Swap the values so that i <= j if (j < i) { int temp = i; i = j; j = temp; } // Steps to go from i to j (left to right) int stepsToRight = getSteps(str, i, j, n); // While going from i to j (right to left) // First go from from i to 0 // then from (n - 1) to j int stepsToLeft = getSteps(str, 0 , i, n) + getSteps(str, j, n - 1 , n); // If first and last character is different // then it'll add a step to stepsToLeft if (str.charAt( 0 ) != str.charAt(n - 1 )) stepsToLeft++; // Return the minimum of two paths return Math.min(stepsToLeft, stepsToRight); } // Driver code public static void main(String []args) { String str = "SSNSS" ; int n = str.length(); int i = 0 , j = 3 ; System.out.println(getMinSteps(str, i, j, n)); } } // This code is contributed by ihritik |
Python3
# Python3 implementation of the approach # Function to return the count of steps # required to move from i to j def getSteps( str , i, j, n) : # Starting from i + 1 k = i + 1 # Count of steps steps = 0 # Current character ch = str [i] while (k < = j): # If current character is different from previous if ( str [k] ! = ch): # Increment steps steps = steps + 1 # Update current character ch = str [k] k = k + 1 # Return total steps return steps # Function to return the minimum number of steps # required to reach j from i def getMinSteps( str , i, j, n): # Swap the values so that i <= j if (j < i): temp = i i = j j = temp # Steps to go from i to j (left to right) stepsToRight = getSteps( str , i, j, n) # While going from i to j (right to left) # First go from from i to 0 # then from (n - 1) to j stepsToLeft = getSteps( str , 0 , i, n) + getSteps( str , j, n - 1 , n) # If first and last character is different # then it'll add a step to stepsToLeft if ( str [ 0 ] ! = str [n - 1 ]): stepsToLeft = stepsToLeft + 1 # Return the minimum of two paths return min (stepsToLeft, stepsToRight) # Driver code str = "SSNSS" n = len ( str ) i = 0 j = 3 print (getMinSteps( str , i, j, n)) # This code is contributed by ihritik |
C#
// C# implementation of the approach using System; class GFG { // Function to return the count of steps // required to move from i to j static int getSteps( string str, int i, int j, int n) { // Starting from i + 1 int k = i + 1; // Count of steps int steps = 0; // Current character char ch = str[i]; while (k <= j) { // If current character is different from previous if (str[k] != ch) { // Increment steps steps++; // Update current character ch = str[k]; } k++; } // Return total steps return steps; } // Function to return the minimum number of steps // required to reach j from i static int getMinSteps( string str, int i, int j, int n) { // Swap the values so that i <= j if (j < i) { int temp = i; i = j; j = temp; } // Steps to go from i to j (left to right) int stepsToRight = getSteps(str, i, j, n); // While going from i to j (right to left) // First go from from i to 0 // then from (n - 1) to j int stepsToLeft = getSteps(str, 0, i, n) + getSteps(str, j, n - 1, n); // If first and last character is different // then it'll add a step to stepsToLeft if (str[0] != str[n - 1]) stepsToLeft++; // Return the minimum of two paths return Math.Min(stepsToLeft, stepsToRight); } // Driver code public static void Main() { string str = "SSNSS" ; int n = str.Length; int i = 0, j = 3; Console.WriteLine(getMinSteps(str, i, j, n)); } } // This code is contributed by ihritik |
PHP
<?php // PHP implementation of the above approach // Function to return the count of steps // required to move from i to j function getSteps( $str , $i , $j , $n ) { // Starting from i + 1 $k = $i + 1; // Count of steps $steps = 0; // Current character $ch = $str [ $i ]; while ( $k <= $j ) { // If current character is different // from previous if ( $str [ $k ] != $ch ) { // Increment steps $steps ++; // Update current character $ch = $str [ $k ]; } $k ++; } // Return total steps return $steps ; } // Function to return the minimum number // of steps required to reach j from i function getMinSteps( $str , $i , $j , $n ) { // Swap the values so that i <= j if ( $j < $i ) { $temp = $i ; $i = $j ; $j = $temp ; } // Steps to go from i to j (left to right) $stepsToRight = getSteps( $str , $i , $j , $n ); // While going from i to j (right to left) // First go from from i to 0 then // from (n - 1) to j $stepsToLeft = getSteps( $str , 0, $i , $n ) + getSteps( $str , $j , $n - 1, $n ); // If first and last character is different // then it'll add a step to stepsToLeft if ( $str [0] != $str [ $n - 1]) $stepsToLeft ++; // Return the minimum of two paths return min( $stepsToLeft , $stepsToRight ); } // Driver code $str = "SSNSS" ; $n = strlen ( $str ); $i = 0; $j = 3; echo getMinSteps( $str , $i , $j , $n ); // This code is contributed by aishwarya.27 ?> |
0
Recommended Posts:
- Count of cyclic permutations having XOR with other binary string as 0
- Minimal moves to form a string by adding characters or appending string itself
- Find the minimum number of preprocess moves required to make two strings equal
- Minimum bit changes in Binary Circular array to reach a index
- Maximum power of jump required to reach the end of string
- Find time taken for signal to reach all positions in a string
- Minimum deletions from string to reduce it to string with at most 2 unique characters
- Minimum number of given operations required to convert a string to another string
- Find the character in first string that is present at minimum index in second string
- Minimum changes required to make first string substring of second string
- Covert string X to an anagram of string Y with minimum replacements
- Minimum length of string having all permutation of given string.
- Minimum rotations required to get the same string
- Minimum cost to construct a string
- Minimum Distance Between Words of a String
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.