Given an array of N integers where N is even, find the minimum and maximum sum of absolute difference of N/2 pairs formed by pairing every element with one other element.
Examples:
Input: a[] = {10, -10, 20, -40}
Output: min_sum = 40, max_sum = 80
Explanation: Pairs selected for minimum sum
(-10, -40) and (10, 20)
min_sum = |-10 - -40| + |20 - 10| = 40
Pairs selected for maximum sum
(-10, 20) and (-40, 10)
max_sum = |-10 - 20| + |10 - -40| = 80
Input: a[] = {20, -10, -1, 30}
Output: min_sum = 19, max_sum = 61
Explanation: Pairs selected for minimum sum
(-1, -10) and (20, 30)
min_sum = |-1 - -10| + |20 - 30| = 19
Pairs selected for maximum sum
(-1, 30) and (-10, 20)
max_sum = |-1 - 30| + |-10 - 20| = 61
Approach: The most common observation will be that for minimum sum of differences we need the closest elements together as a pair and for the maximum sum we need the farthest elements together as a pair. So, we can simply sort the given list of elements and the closest pairs will be a[i], a[i+1], their absolute difference sum will yield us the minimum sum. The farthest will be (a[0], a[n-1]) and (a[1], a[n-2]) and so on, and their absolute difference sum will yield us the maximum-sum.
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
int calculate_min_sum( int a[], int n)
{
sort(a, a + n);
int min_sum = 0;
for ( int i = 1; i < n; i += 2) {
min_sum += abs (a[i] - a[i - 1]);
}
return min_sum;
}
int calculate_max_sum( int a[], int n)
{
sort(a, a + n);
int max_sum = 0;
for ( int i = 0; i < n / 2; i++) {
max_sum += abs (a[n - 1 - i] - a[i]);
}
return max_sum;
}
int main()
{
int a[] = { 10, -10, 20, -40};
int n = sizeof (a) / sizeof (a[0]);
cout << "The minimum sum of pairs is "
<< calculate_min_sum(a, n) << endl;
cout << "The maximum sum of pairs is "
<< calculate_max_sum(a, n) << endl;
return 0;
}
|
Java
import java.util.Arrays;
class GFG
{
static int calculate_min_sum( int [] a, int n)
{
Arrays.sort(a);
int min_sum = 0 ;
for ( int i = 1 ; i < n; i += 2 ) {
min_sum += Math.abs(a[i] - a[i - 1 ]);
}
return min_sum;
}
static int calculate_max_sum( int [] a, int n)
{
Arrays.sort(a);
int max_sum = 0 ;
for ( int i = 0 ; i < n / 2 ; i++) {
max_sum += Math.abs(a[n - 1 - i] - a[i]);
}
return max_sum;
}
public static void main (String[] args) {
int [] a = { 10 , - 10 , 20 , - 40 };
int n = a.length;
System.out.println( "The minimum sum of pairs is " +
calculate_min_sum(a, n));
System.out.println( "The maximum sum of pairs is " +
calculate_max_sum(a, n));
}
}
|
Python3
def calculate_min_sum( a, n):
a.sort()
min_sum = 0
for i in range ( 1 , n, 2 ):
min_sum + = abs (a[i] - a[i - 1 ])
return min_sum
def calculate_max_sum(a, n):
a.sort()
max_sum = 0
for i in range (n / / 2 ):
max_sum + = abs (a[n - 1 - i] - a[i])
return max_sum
if __name__ = = "__main__" :
a = [ 10 , - 10 , 20 , - 40 ]
n = len (a)
print ( "The minimum sum of pairs is" ,
calculate_min_sum(a, n))
print ( "The maximum sum of pairs is" ,
calculate_max_sum(a, n))
|
C#
using System;
class GFG
{
static int calculate_min_sum( int []a, int n)
{
Array.Sort(a);
int min_sum = 0;
for ( int i = 1; i < n; i += 2) {
min_sum += Math.Abs(a[i] - a[i - 1]);
}
return min_sum;
}
static int calculate_max_sum( int []a, int n)
{
Array.Sort(a);
int max_sum = 0;
for ( int i = 0; i < n / 2; i++) {
max_sum += Math.Abs(a[n - 1 - i] - a[i]);
}
return max_sum;
}
public static void Main ()
{
int []a = { 10, -10, 20, -40};
int n = a.Length;
Console.WriteLine( "The minimum sum of pairs is " +
calculate_min_sum(a, n));
Console.Write( "The maximum sum of pairs is " +
calculate_max_sum(a, n));
}
}
|
PHP
<?php
function calculate_min_sum( $a , $n )
{
sort( $a );
$min_sum = 0;
for ( $i = 1; $i < $n ; $i += 2)
{
$min_sum += abs ( $a [ $i ] -
$a [ $i - 1]);
}
return $min_sum ;
}
function calculate_max_sum( $a , $n )
{
sort( $a );
$max_sum = 0;
for ( $i = 0; $i < $n / 2; $i ++)
{
$max_sum += abs ( $a [ $n - 1 - $i ] -
$a [ $i ]);
}
return $max_sum ;
}
$a = array (10, -10, 20, -40);
$n = sizeof( $a );
echo ( "The minimum sum of pairs is "
. calculate_min_sum( $a , $n ) . "\n" );
echo ( "The maximum sum of pairs is "
. calculate_max_sum( $a , $n ));
?>
|
Javascript
<script>
function calculate_min_sum(a, n)
{
a.sort();
let min_sum = 0;
for (let i = 1; i < n; i += 2)
{
min_sum += Math.abs(a[i] - a[i - 1]);
}
return min_sum;
}
function calculate_max_sum(a, n)
{
a.sort();
let max_sum = 0;
for (let i = 0; i < parseInt(n / 2, 10); i++)
{
max_sum += Math.abs(a[n - 1 - i] - a[i]);
}
return max_sum;
}
let a = [ 10, -10, 20, -40 ];
let n = a.length;
document.write( "The minimum sum of pairs is " +
calculate_min_sum(a, n) + "</br>" );
document.write( "The maximum sum of pairs is " +
calculate_max_sum(a, n));
</script>
|
Output
The minimum sum of pairs is 40
The maximum sum of pairs is 80
Time complexity : O(n log n)
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!