Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Minimum lines to cover all points

  • Difficulty Level : Easy
  • Last Updated : 13 May, 2021

Given N points in 2-dimensional space, we need to print the count of the minimum number of lines which traverse through all these N points and which go through a specific (xO, yO) point also.
Examples: 
 

If given points are (-1, 3), (4, 3), (2, 1), (-1, -2), 
(3, -3) and (xO, yO) point is (1, 0) i.e. every line
must go through this point. 
Then we have to draw at least two lines to cover all
these points going through (xO, yO) as shown in below
diagram.

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

We can solve this problem by considering the slope of all points with (xO, yO). If two distinct points have the same slope with (xO, yO) then they can be covered with same line only so we can track slope of each point and whenever we get a new slope we will increase our line count by one. 
In below code slope is stored as a pair of integer to get rid of the precision problem and a set is used to keep track of occurred slopes. 
Please see below code for better understanding. 
 

CPP




// C++ program to get minimum lines to cover
// all the points
#include <bits/stdc++.h>
using namespace std;
 
//    Utility method to get gcd of a and b
int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
 
//    method returns reduced form of dy/dx as a pair
pair<int, int> getReducedForm(int dy, int dx)
{
    int g = gcd(abs(dy), abs(dx));
 
    //    get sign of result
    bool sign = (dy < 0) ^ (dx < 0);
 
    if (sign)
        return make_pair(-abs(dy) / g, abs(dx) / g);
    else
        return make_pair(abs(dy) / g, abs(dx) / g);
}
 
/*    method returns minimum number of lines to
    cover all points where all lines goes
    through (xO, yO) */
int minLinesToCoverPoints(int points[][2], int N,
                                   int xO, int yO)
{
    //    set to store slope as a pair
    set< pair<int, int> > st;
    pair<int, int> temp;
    int minLines = 0;
 
    //    loop over all points once
    for (int i = 0; i < N; i++)
    {
        //    get x and y co-ordinate of current point
        int curX = points[i][0];
        int curY = points[i][1];
 
        temp = getReducedForm(curY - yO, curX - xO);
 
        // if this slope is not there in set,
        // increase ans by 1 and insert in set
        if (st.find(temp) == st.end())
        {
            st.insert(temp);
            minLines++;
        }
    }
 
    return minLines;
}
 
// Driver code to test above methods
int main()
{
    int xO, yO;
    xO = 1;
    yO = 0;
 
    int points[][2] =
    {
        {-1, 3},
        {4, 3},
        {2, 1},
        {-1, -2},
        {3, -3}
    };
 
    int N = sizeof(points) / sizeof(points[0]);
    cout << minLinesToCoverPoints(points, N, xO, yO);
    return 0;
}

Python3




# Python3 program to get minimum lines to cover
# all the points
 
# Utility method to get gcd of a and b
def gcd(a, b):
    if (b == 0):
        return a
    return gcd(b, a % b)
 
# method returns reduced form of dy/dx as a pair
def getReducedForm(dy, dx):
    g = gcd(abs(dy), abs(dx))
 
    # get sign of result
    sign = (dy < 0) ^ (dx < 0)
 
    if (sign):
        return (-abs(dy) // g, abs(dx) // g)
    else:
        return (abs(dy) // g, abs(dx) // g)
 
# /* method returns minimum number of lines to
#     cover all points where all lines goes
#     through (xO, yO) */
def minLinesToCoverPoints(points, N, xO, yO):
     
    # set to store slope as a pair
    st = dict()
    minLines = 0
 
    # loop over all points once
    for i in range(N):
         
        # get x and y co-ordinate of current point
        curX = points[i][0]
        curY = points[i][1]
 
        temp = getReducedForm(curY - yO, curX - xO)
 
        # if this slope is not there in set,
        # increase ans by 1 and insert in set
        if (temp not in st):
            st[temp] = 1
            minLines += 1
 
    return minLines
 
# Driver code
xO = 1
yO = 0
 
points =[[-1, 3],
         [4, 3],
         [2, 1],
         [-1, -2],
         [3, -3]]
 
N = len(points)
print(minLinesToCoverPoints(points, N, xO, yO))
 
# This code is contributed by mohit kumar 29

Javascript




<script>
// Javascript program to get minimum lines to cover
// all the points
 
    //    Utility method to get gcd of a and b
    function gcd(a,b)
    {
        if (b == 0)
            return a;
        return gcd(b, a % b);
    }
     
    // method returns reduced form of dy/dx as a pair
    function getReducedForm(dy,dx)
    {
        let g = gcd(Math.abs(dy), Math.abs(dx));
   
    // get sign of result
    let sign = (dy < 0) ^ (dx < 0);
       
    if (sign)
    {  
        return [Math.floor(-Math.abs(dy) / g), Math.floor(Math.abs(dx) / g)];
             
    }
    else
        return [Math.floor(Math.abs(dy) / g), Math.floor(Math.abs(dx) / g)];
    }
     
    /*    method returns minimum number of lines to
    cover all points where all lines goes
    through (xO, yO) */
    function minLinesToCoverPoints(points,N,x0,y0)
    {
        let st=new Set();
        let temp;
        let minLines = 0;
         
        // loop over all points once
    for (let i = 0; i < N; i++)
    {
        // get x and y co-ordinate of current point
        let curX = points[i][0];
        let curY = points[i][1];
   
        temp = getReducedForm(curY - yO, curX - xO);
           
        // if this slope is not there in set,
        // increase ans by 1 and insert in set
        if (!st.has(temp.join("")))
        {
             
            st.add(temp.join(""));
            minLines++;
        }
    }
   
    return minLines;
    }
     
    // Driver code to test above methods
    let xO, yO;
    xO = 1;
    yO = 0;
     
    let points =[[-1, 3],
         [4, 3],
         [2, 1],
         [-1, -2],
         [3, -3]];
    let N = points.length;
    document.write(minLinesToCoverPoints(points, N, xO, yO))
    
// This code is contributed by unknown2108
</script>

Output: 
 

2

This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :