Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Minimum inversions required so that no two adjacent elements are same

  • Difficulty Level : Medium
  • Last Updated : 03 Jun, 2021

Given a binary array arr[] of size N. The task is to find the minimum number of inversions required so that no two adjacent elements are same. After a single inversion, an element could change from 0 to 1 or from 1 to 0.
Examples: 
 

Input: arr[] = {1, 1, 1} 
Output:
Change arr[1] from 1 to 0 and 
the array becomes {1, 0, 1}.
Input: arr[] = {1, 0, 0, 1, 0, 0, 1, 0} 
Output:
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 

Approach: There are only two possibilities to make the array {1, 0, 1, 0, 1, 0, 1, …} or {0, 1, 0, 1, 0, 1, 0, …}. Let ans_a and ans_b be the count of changes required to get these arrays respectively. Now, the final answer will be min(ans_a, ans_b).
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum
// inversions required so that no
// two adjacent elements are same
int min_changes(int a[], int n)
{
    // To store the inversions required
    // to make the array {1, 0, 1, 0, 1, 0, 1, ...}
    // and {0, 1, 0, 1, 0, 1, 0, ...} respectively
    int ans_a = 0, ans_b = 0;
 
    // Find all the changes required
    for (int i = 0; i < n; i++) {
        if (i % 2 == 0) {
            if (a[i] == 0)
                ans_a++;
            else
                ans_b++;
        }
        else {
            if (a[i] == 0)
                ans_b++;
            else
                ans_a++;
        }
    }
 
    // Return the required answer
    return min(ans_a, ans_b);
}
 
// Driver code
int main()
{
    int a[] = { 1, 0, 0, 1, 0, 0, 1, 0 };
    int n = sizeof(a) / sizeof(a[0]);
 
    cout << min_changes(a, n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
// Function to return the minimum
// inversions required so that no
// two adjacent elements are same
static int min_changes(int a[], int n)
{
    // To store the inversions required
    // to make the array {1, 0, 1, 0, 1, 0, 1, ...}
    // and {0, 1, 0, 1, 0, 1, 0, ...} respectively
    int ans_a = 0, ans_b = 0;
 
    // Find all the changes required
    for (int i = 0; i < n; i++)
    {
        if (i % 2 == 0)
        {
            if (a[i] == 0)
                ans_a++;
            else
                ans_b++;
        }
        else
        {
            if (a[i] == 0)
                ans_b++;
            else
                ans_a++;
        }
    }
 
    // Return the required answer
    return Math.min(ans_a, ans_b);
}
 
// Driver code
public static void main(String[] args)
{
    int a[] = { 1, 0, 0, 1, 0, 0, 1, 0 };
    int n = a.length;
 
    System.out.println(min_changes(a, n));
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation of the approach
 
# Function to return the minimum
# inversions required so that no
# two adjacent elements are same
def min_changes(a, n):
 
    # To store the inversions required
    # to make the array {1, 0, 1, 0, 1, 0, 1, ...}
    # and {0, 1, 0, 1, 0, 1, 0, ...} respectively
    ans_a = 0;
    ans_b = 0;
 
    # Find all the changes required
    for i in range(n):
        if (i % 2 == 0):
            if (a[i] == 0):
                ans_a += 1;
            else:
                ans_b += 1;
 
        else:
            if (a[i] == 0):
                ans_b += 1;
            else:
                ans_a += 1;
 
    # Return the required answer
    return min(ans_a, ans_b);
 
# Driver code
if __name__ == '__main__':
 
    a = [ 1, 0, 0, 1, 0, 0, 1, 0 ];
    n = len(a);
 
    print(min_changes(a, n));
 
# This code is contributed by Rajput-Ji

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the minimum
// inversions required so that no
// two adjacent elements are same
static int min_changes(int []a, int n)
{
    // To store the inversions required
    // to make the array {1, 0, 1, 0, 1, 0, 1, ...}
    // and {0, 1, 0, 1, 0, 1, 0, ...} respectively
    int ans_a = 0, ans_b = 0;
 
    // Find all the changes required
    for (int i = 0; i < n; i++)
    {
        if (i % 2 == 0)
        {
            if (a[i] == 0)
                ans_a++;
            else
                ans_b++;
        }
        else
        {
            if (a[i] == 0)
                ans_b++;
            else
                ans_a++;
        }
    }
 
    // Return the required answer
    return Math.Min(ans_a, ans_b);
}
 
// Driver code
public static void Main(String[] args)
{
    int []a = { 1, 0, 0, 1, 0, 0, 1, 0 };
    int n = a.Length;
 
    Console.WriteLine(min_changes(a, n));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the minimum
// inversions required so that no
// two adjacent elements are same
function min_changes(a, n) {
    // To store the inversions required
    // to make the array {1, 0, 1, 0, 1, 0, 1, ...}
    // and {0, 1, 0, 1, 0, 1, 0, ...} respectively
    let ans_a = 0, ans_b = 0;
 
    // Find all the changes required
    for (let i = 0; i < n; i++) {
        if (i % 2 == 0) {
            if (a[i] == 0)
                ans_a++;
            else
                ans_b++;
        }
        else {
            if (a[i] == 0)
                ans_b++;
            else
                ans_a++;
        }
    }
 
    // Return the required answer
    return Math.min(ans_a, ans_b);
}
 
// Driver code
let a = [1, 0, 0, 1, 0, 0, 1, 0];
let n = a.length;
 
document.write(min_changes(a, n));
 
</script>
Output: 
3

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!