Minimum insertions to make XOR of an Array equal to half of its sum
Given an array of positive integers, the task is to find the minimum number of insertions to be done in the array, to make the XOR of the array equal to half of its sum, i.e. 2 * Xor of all elements = Sum of all elements
Examples:
Input: arr[] = {1 2 3 4 5}
Output: 1 16
Explanation:
In the modified array {1 2 3 4 5 1 16},
Sum = 1 + 2 + 3 + 4 + 5 + 1 + 16 = 32
Xor = 1 ^ 2 ^ 3 ^ 4 ^ 5 ^ 1 ^ 16 = 16
And, 2 * 16 == 32
Thus, the condition 2 * Xor of all elements = Sum of all elements is satisfied.Input: 7 11 3 25 51 32 9 29
Output: 17 184
Explanation:
In the modified array { 7 11 3 25 51 32 9 29 17 184}
Sum = 7 + 11 + 3 + 25 + 51 + 32 + 9 + 29 + 17 + 184 = 368
Xor = 7 ^ 11 ^ 3 ^ 25 ^ 51 ^ 32 ^ 9 ^ 29 ^ 17 ^ 184 = 184
And, 2 * 184 == 368
Thus, the condition 2 * Xor of all elements = Sum of all elements is satisfied.
Approach:
To solve the problem, we need to focus on the two basic properties of XOR:
- A xor A = 0
- A xor 0 = A
We need to follow the steps below to solve the problem:
- Calculate the Sum of all array elements(S) and the Xor of all elements (X). If S == 2*X, no change in array is required. Print -1 for this case.
- Otherwise, do the following:
- If X = 0, just insert S into the array. Now, the XOR is S, and the sum is 2S.
- Otherwise, Add X to the array to make the new Xor of the array equal to 0. Then, insert S+X in the array. Now, the Sum is 2(S+X) and the Xor is S+X
Below is the implementation of the above approach.
C++
// C++ Program to make XOR of // of all array elements equal // to half of its sum // by minimum insertions #include <bits/stdc++.h> using namespace std; // Function to make XOR of the // array equal to half of its sum int make_xor_half(vector< int >& arr) { int sum = 0, xr = 0; // Calculate the sum and // Xor of all the elements for ( int a : arr) { sum += a; xr ^= a; } // If the required condition // satisfies already, return // the original array if (2 * xr == sum) return -1; // If Xor is already zero, // Insert sum if (xr == 0) { arr.push_back(sum); return 1; } // Otherwise, insert xr // and insert sum + xr arr.push_back(xr); arr.push_back(sum + xr); return 2; } // Driver Code int main() { int N = 7; vector< int > nums = { 3, 4, 7, 1, 2, 5, 6 }; int count = make_xor_half(nums); if (count == -1) cout << "-1" << endl; else if (count == 1) cout << nums[N] << endl; else cout << nums[N] << " " << nums[N + 1] << endl; return 0; } |
Python3
# Python3 program to make XOR of # of all array elements equal to # half of its sum by minimum # insertions # Function to make XOR of the # array equal to half of its sum def make_xor_half(arr): sum = 0 ; xr = 0 ; # Calculate the sum and # Xor of all the elements for a in arr: sum + = a; xr ^ = a; # If the required condition # satisfies already, return # the original array if ( 2 * xr = = sum ): return - 1 ; # If Xor is already zero, # Insert sum if (xr = = 0 ): arr.append( sum ); return 1 ; # Otherwise, insert xr # and insert sum + xr arr.append(xr); arr.append( sum + xr); return 2 ; # Driver code if __name__ = = "__main__" : N = 7 ; nums = [ 3 , 4 , 7 , 1 , 2 , 5 , 6 ]; count = make_xor_half(nums); if (count = = - 1 ): print ( "-1" ); elif (count = = 1 ): print (nums[N]); else : print (nums[N], nums[N + 1 ]); # This code is contributed by AnkitRai01 |
Java
// Java program to make XOR of all // array elements equal to half // of its sum by minimum insertions import java.util.*; class GFG{ // Function to make XOR of the // array equal to half of its sum static int make_xor_half(ArrayList<Integer> arr) { int sum = 0 , xr = 0 ; // Calculate the sum and // Xor of all the elements for ( int i = 0 ; i < arr.size(); i++) { int a = arr.get(i); sum += a; xr ^= a; } // If the required condition // satisfies already, return // the original array if ( 2 * xr == sum) return - 1 ; // If Xor is already zero, // Insert sum if (xr == 0 ) { arr.add(sum); return 1 ; } // Otherwise, insert xr // and insert sum + xr arr.add(xr); arr.add(sum + xr); return 2 ; } // Driver code public static void main(String[] args) { int N = 7 ; ArrayList<Integer> nums = new ArrayList<Integer>( Arrays.asList( 3 , 4 , 7 , 1 , 2 , 5 , 6 )); int count = make_xor_half(nums); if (count == - 1 ) System.out.print(- 1 + "\n" ); else if (count == 1 ) System.out.print(nums.get(N) + "\n" ); else System.out.print(nums.get(N) + " " + nums.get(N + 1 ) + "\n" ); } } // This code is contributed by Chitranayal |
C#
// C# program to make XOR of all // array elements equal to half // of its sum by minimum insertions using System; using System.Collections; using System.Collections.Generic; class GFG{ // Function to make XOR of the // array equal to half of its sum static int make_xor_half(ArrayList arr) { int sum = 0, xr = 0; // Calculate the sum and // Xor of all the elements foreach ( int a in arr) { sum += a; xr ^= a; } // If the required condition // satisfies already, return // the original array if (2 * xr == sum) return -1; // If Xor is already zero, // Insert sum if (xr == 0) { arr.Add(sum); return 1; } // Otherwise, insert xr // and insert sum + xr arr.Add(xr); arr.Add(sum + xr); return 2; } // Driver code public static void Main( string [] args) { int N = 7; ArrayList nums = new ArrayList(){ 3, 4, 7, 1, 2, 5, 6 }; int count = make_xor_half(nums); if (count == -1) Console.Write(-1 + "\n" ); else if (count == 1) Console.Write(nums[N] + "\n" ); else Console.Write(nums[N] + " " + nums[N + 1] + "\n" ); } } // This code is contributed by rutvik_56 |
Javascript
<script> // Javascript Program to make XOR of // of all array elements equal // to half of its sum // by minimum insertions // Function to make XOR of the // array equal to half of its sum function make_xor_half(arr) { let sum = 0, xr = 0; // Calculate the sum and // Xor of all the elements for (let a = 0; a < arr.length; a++) { sum += arr[a]; xr ^= arr[a]; } // If the required condition // satisfies already, return // the original array if (2 * xr == sum) return -1; // If Xor is already zero, // Insert sum if (xr == 0) { arr.push(sum); return 1; } // Otherwise, insert xr // and insert sum + xr arr.push(xr); arr.push(sum + xr); return 2; } // Driver Code let N = 7; let nums = [ 3, 4, 7, 1, 2, 5, 6 ]; let count = make_xor_half(nums); if (count == -1) document.write( "-1<br>" ); else if (count == 1) document.write(nums[N] + "<br>" ); else document.write(nums[N] + " " + nums[N + 1]); </script> |
28
Time Complexity: O(N) where N is the size of the array.
Auxiliary Space: O(1) it is using constant space for variables
Please Login to comment...