Skip to content
Related Articles
Minimum index i such that all the elements from index i to given index are equal
• Last Updated : 27 Apr, 2021

Given an array arr[] of integers and an integer pos, the task is to find the minimum index i such that all the elements from index i to index pos are equal.

Examples:

Input: arr[] = {2, 1, 1, 1, 5, 2}, pos = 3
Output:
Elements in index range [1, 3] are all equal to 1.
Input: arr[] = {2, 1, 1, 1, 5, 2}, pos = 5
Output:

Simple Approach: Starting from index pos – 1, traverse the array in reverse and for the first index i such that arr[i] != arr[pos] print i + 1 which is the required index.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the minimum required index``int` `minIndex(``int` `arr[], ``int` `n, ``int` `pos)``{``    ``int` `num = arr[pos];` `    ``// Start from arr[pos - 1]``    ``int` `i = pos - 1;``    ``while` `(i >= 0) {``        ``if` `(arr[i] != num)``            ``break``;``        ``i--;``    ``}` `    ``// All elements are equal``    ``// from arr[i + 1] to arr[pos]``    ``return` `i + 1;``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 2, 1, 1, 1, 5, 2 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``int` `pos = 4;``    ` `      ``// Function Call``    ``cout << minIndex(arr, n, pos);``    ``return` `0;``}`

## Java

 `// Java implementation of the approach``class` `GFG {` `    ``// Function to return the minimum required index``    ``static` `int` `minIndex(``int` `arr[], ``int` `n, ``int` `pos)``    ``{``        ``int` `num = arr[pos];` `        ``// Start from arr[pos - 1]``        ``int` `i = pos - ``1``;``        ``while` `(i >= ``0``) {``            ``if` `(arr[i] != num)``                ``break``;``            ``i--;``        ``}` `        ``// All elements are equal``        ``// from arr[i + 1] to arr[pos]``        ``return` `i + ``1``;``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `arr[] = { ``2``, ``1``, ``1``, ``1``, ``5``, ``2` `};``        ``int` `n = arr.length;``        ``int` `pos = ``4``;``        ` `          ``// Function Call``        ``System.out.println(minIndex(arr, n, pos));``    ``}``}` `// This code is contributed by Code_Mech.`

## Python3

 `# Python3 implementation of the approach` `# Function to return the minimum``# required index``def` `minIndex(arr, n, pos):` `    ``num ``=` `arr[pos]` `    ``# Start from arr[pos - 1]``    ``i ``=` `pos ``-` `1``    ``while` `(i >``=` `0``):``        ``if` `(arr[i] !``=` `num):``            ``break``        ``i ``-``=` `1``    ` `    ``# All elements are equal``    ``# from arr[i + 1] to arr[pos]``    ``return` `i ``+` `1` `# Driver code``arr ``=` `[``2``, ``1``, ``1``, ``1``, ``5``, ``2` `]``n ``=` `len``(arr)``pos ``=` `4` `# Function Call``print``(minIndex(arr, n, pos))` `# This code is contributed by``# Mohit Kumar 29`

## C#

 `// C# implementation of the approach``using` `System;``class` `GFG {` `    ``// Function to return the minimum required index``    ``static` `int` `minIndex(``int``[] arr, ``int` `n, ``int` `pos)``    ``{``        ``int` `num = arr[pos];` `        ``// Start from arr[pos - 1]``        ``int` `i = pos - 1;``        ``while` `(i >= 0) {``            ``if` `(arr[i] != num)``                ``break``;``            ``i--;``        ``}` `        ``// All elements are equal``        ``// from arr[i + 1] to arr[pos]``        ``return` `i + 1;``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``int``[] arr = { 2, 1, 1, 1, 5, 2 };``        ``int` `n = arr.Length;``        ``int` `pos = 4;``        ` `          ``// Function Call``        ``Console.WriteLine(minIndex(arr, n, pos));``    ``}``}` `// This code is contributed``// by Akanksha Rai`

## PHP

 `= 0)``    ``{``        ``if` `(``\$arr``[``\$i``] != ``\$num``)``            ``break``;``        ``\$i``--;``    ``}` `    ``// All elements are equal``    ``// from arr[i + 1] to arr[pos]``    ``return` `\$i` `+ 1;``}` `// Driver code``\$arr` `= ``array``(2, 1, 1, 1, 5, 2 );``\$n` `= sizeof(``\$arr``);``\$pos` `= 4;` `echo` `minIndex(``\$arr``, ``\$n``, ``\$pos``);` `// This code is contributed by Ryuga``?>`

## Javascript

 ``
Output
`4`

Time Complexity: O(N)
Space Complexity: O(1)

Efficient Approach :

Do a binary search in the sub-array [0, pos-1]. Stop condition will be if arr[mid] == arr[pos] && arr[mid-1] != arr[pos]. Go-left or Go-right will depend on if arr[mid] == arr[pos] or not respectively.

Implementation:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the minimum required index``int` `minIndex(``int` `arr[], ``int` `pos)``{``    ``int` `low = 0;``    ``int` `high = pos;``    ``int` `i = pos;` `    ``while` `(low < high) {``        ``int` `mid = (low + high) / 2;``        ``if` `(arr[mid] != arr[pos]) {``            ``low = mid + 1;``        ``}``        ``else` `{``            ``high = mid - 1;``            ``i = mid;``            ``if` `(mid > 0 && arr[mid - 1] != arr[pos]) {` `                ``// Short-cicuit more comparisions as found``                ``// the border point``                ``break``;``            ``}``        ``}``    ``}` `    ``// For cases were high = low + 1 and arr[high] will``    ``// match with``    ``// arr[pos] but not arr[low] or arr[mid]. In such``    ``// iteration the if condition will satisfy and loop will``    ``// break post that low will be updated. Hence i will not``    ``// point to the correct index.``    ``return` `arr[low] == arr[pos] ? low : i;``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 2, 1, 1, 1, 5, 2 };` `    ``cout << minIndex(arr, 2) << endl; ``// Should be 1``    ``cout << minIndex(arr, 3) << endl; ``// Should be 1``    ``cout << minIndex(arr, 4) << endl; ``// Should be 4``    ``return` `0;``}` `// This code is contributed by``// anshbikram`

## Java

 `// Java implementation of the approach` `class` `GFG {``    ` `      ``// Function to return the minimum required index``    ``static` `int` `minIndex(``int` `arr[], ``int` `pos)``    ``{``        ``int` `low = ``0``;``        ``int` `high = pos;``        ``int` `i = pos;` `        ``while` `(low < high) {``            ``int` `mid = (low + high) / ``2``;``            ``if` `(arr[mid] != arr[pos]) {``                ``low = mid + ``1``;``            ``}``            ``else` `{``                ``high = mid - ``1``;``                ``i = mid;``                ``if` `(mid > ``0` `&& arr[mid - ``1``] != arr[pos]) {``                    ` `                      ``// Short-cicuit more comparisions as``                    ``// found the border point``                    ``break``;``                ``}``            ``}``        ``}` `        ``// For cases were high = low + 1 and arr[high] will``        ``// match with arr[pos] but not arr[low] or arr[mid].``        ``// In such iteration the if condition will satisfy``        ``// and loop will break post that low will be``        ``// updated. Hence i will not point to the correct``        ``// index.``        ``return` `arr[low] == arr[pos] ? low : i;``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `arr[] = { ``2``, ``1``, ``1``, ``1``, ``5``, ``2` `};` `        ``System.out.println(minIndex(arr, ``2``)); ``// Should be 1``        ``System.out.println(minIndex(arr, ``3``)); ``// Should be 1``        ``System.out.println(minIndex(arr, ``4``)); ``// Should be 4``    ``}``}` `// This code is contributed by``// anshbikram`

## Python3

 `# Python3 implementation of the approach` `# Function to return the minimum``# required index` `def` `minIndex(arr, pos):``    ``low ``=` `0``    ``high ``=` `pos``    ``i ``=` `pos` `    ``while` `low < high:``        ``mid ``=` `(low ``+` `high)``/``/``2``        ``if` `arr[mid] !``=` `arr[pos]:``            ``low ``=` `mid ``+` `1``        ``else``:``            ``high ``=` `mid ``-` `1``            ``i ``=` `mid``            ``if` `mid > ``0` `and` `arr[mid``-``1``] !``=` `arr[pos]:` `                ``# Short-cicuit more comparisions as found the border point``                ``break` `    ``# For cases were high = low + 1 and arr[high] will match with``    ``# arr[pos] but not arr[low] or arr[mid]. In such iteration``    ``# the if condition will satisfy and loop will break post that``    ``# low will be updated. Hence i will not point to the correct index.``    ``return` `low ``if` `arr[low] ``=``=` `arr[pos] ``else` `i`  `# Driver code``arr ``=` `[``2``, ``1``, ``1``, ``1``, ``5``, ``2``]` `print``(minIndex(arr, ``2``))  ``# Should be 1``print``(minIndex(arr, ``3``))  ``# Should be 1``print``(minIndex(arr, ``4``))  ``# Should be 4` `# This code is contributed by``# anshbikram`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG{``    ` `// Function to return the minimum``// required index``static` `int` `minIndex(``int` `[]arr, ``int` `pos)``{``    ``int` `low = 0;``    ``int` `high = pos;``    ``int` `i = pos;` `    ``while` `(low < high)``    ``{``        ``int` `mid = (low + high) / 2;``        ``if` `(arr[mid] != arr[pos])``        ``{``            ``low = mid + 1;``        ``}``        ``else``        ``{``            ``high = mid - 1;``            ``i = mid;``            ``if` `(mid > 0 && arr[mid - 1] != arr[pos])``            ``{``                ` `                ``// Short-cicuit more comparisions as``                ``// found the border point``                ``break``;``            ``}``        ``}``    ``}` `    ``// For cases were high = low + 1 and arr[high] will``    ``// match with arr[pos] but not arr[low] or arr[mid].``    ``// In such iteration the if condition will satisfy``    ``// and loop will break post that low will be``    ``// updated. Hence i will not point to the correct``    ``// index.``    ``return` `arr[low] == arr[pos] ? low : i;``}` `// Driver code``public` `static` `void` `Main()``{``    ``int` `[]arr = { 2, 1, 1, 1, 5, 2 };` `    ``Console.WriteLine(minIndex(arr, 2)); ``// Should be 1``    ``Console.WriteLine(minIndex(arr, 3)); ``// Should be 1``    ``Console.WriteLine(minIndex(arr, 4)); ``// Should be 4``}``}` `// This code is contributed by chitranayal`

## Javascript

 ``
Output
```1
1
4```

Time Complexity: O(log(n))
Space Complexity: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live

My Personal Notes arrow_drop_up