Skip to content
Related Articles

Related Articles

Minimum increments or decrements required to signs of prefix sum array elements alternating

Improve Article
Save Article
  • Difficulty Level : Hard
  • Last Updated : 23 Aug, 2021
Improve Article
Save Article

Given an array arr[] of N integers, the task is to find the minimum number of increments/decrements of array elements by 1 to make the sign of prefix sum of array alternating.

Examples:

Input: arr[] = {1, -3, 1, 0}
Output: 4
Explanation:
Following are the operations performed on the given array elements:

  1. Incrementing the array element arr[1](= -3) by 1 modifies the array to {1, -2, 1, 0}.
  2. Incrementing the array element arr[2](= 1) by 1 modifies the array to {1, -2, 2, 0}.
  3. Decrementing the array element arr[3](= 0) by 1 modifies the array to {1, -2, 2, -1}.
  4. Decrementing the array element arr[3](= -1) by 1 modifies the array to {1, -2, 2, -2}.

After the above operations, the prefix sum of the modified array is {1, -1, 1, -1}, which is in alternate order of sign. Therefore, the minimum number of operations required is 4.

Input: arr[] = {3, -6, 4, -5, 7}
Output: 0

Approach: The given problem can be solved by modifying the array element using the given operations in both the order i.e., positive, negative, positive, … or negative, positive, negative, …, and print the minimum of the two operations required. Follow the steps below to solve the given problem:

  • For Case 1: modifying the array element in the order of negative, positive, negative:
    1. Initialize variables current_prefix_1 as 0 that stores the prefix sum of the array.
    2. Initialize variables minOperationCase1 as 0 that stores the resultant minimum number of operations required.
    3. Traverse the given array and perform the following steps:
      • Increment the current_prefix_1 by arr[i].
      • If the value of current_prefix_1 or the parity is -ve, then increment the minimum number of operations by the abs(parity – current_prefix_1).
      • Multiply the parity by (-1).
  • Similarly, as discussed in Case 1, find the minimum number of operations required for the order of prefix sum as positive, negative, positive, … and store it in a variable minOperationCase2.
  • After completing the above steps, print the minimum of minOperationCase1 and minOperationCase2 as the resultant operations required.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum number
// of increments/decrements of array
// elements by 1 to make signs of
// prefix sum array elements alternating
int minimumOperations(int A[], int N)
{
    // Case 1. neg - pos - neg
    int cur_prefix_1 = 0;
 
    // Stores the current sign of
    // the prefix sum of array
    int parity = -1;
 
    // Stores minimum number of operations
    // for Case 1
    int minOperationsCase1 = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        cur_prefix_1 += A[i];
 
        // Checking both conditions
        if (cur_prefix_1 == 0
            || parity * cur_prefix_1 < 0) {
 
            minOperationsCase1
                += abs(parity - cur_prefix_1);
 
            // Update the  current prefix1 to
            // currentPrefixSum
            cur_prefix_1 = parity;
        }
        parity *= -1;
    }
 
    // Case 2. pos - neg - pos
    int cur_prefix_2 = 0;
 
    // Stores the prefix sum of array
    parity = 1;
 
    // Stores minimum number of operations
    // for Case 1
    int minOperationsCase2 = 0;
 
    for (int i = 0; i < N; i++) {
 
        cur_prefix_2 += A[i];
 
        // Checking both conditions
        if (cur_prefix_2 == 0
            || parity * cur_prefix_2 < 0) {
 
            minOperationsCase2
                += abs(parity - cur_prefix_2);
 
            // Update the current prefix2 to
            // currentPrefixSum
            cur_prefix_2 = parity;
        }
 
        parity *= -1;
    }
 
    return min(minOperationsCase1,
               minOperationsCase2);
}
 
// Driver Code
int main()
{
    int A[] = { 1, -3, 1, 0 };
    int N = sizeof(A) / sizeof(A[0]);
    cout << minimumOperations(A, N);
 
    return 0;
}

Java




// Java code for above approach
import java.util.*;
 
class GFG{
     
// Function to find the minimum number
// of increments/decrements of array
// elements by 1 to make signs of
// prefix sum array elements alternating
static int minimumOperations(int A[], int N)
{
    // Case 1. neg - pos - neg
    int cur_prefix_1 = 0;
 
    // Stores the current sign of
    // the prefix sum of array
    int parity = -1;
 
    // Stores minimum number of operations
    // for Case 1
    int minOperationsCase1 = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        cur_prefix_1 += A[i];
 
        // Checking both conditions
        if (cur_prefix_1 == 0
            || parity * cur_prefix_1 < 0) {
 
            minOperationsCase1
                += Math.abs(parity - cur_prefix_1);
 
            // Update the  current prefix1 to
            // currentPrefixSum
            cur_prefix_1 = parity;
        }
        parity *= -1;
    }
 
    // Case 2. pos - neg - pos
    int cur_prefix_2 = 0;
 
    // Stores the prefix sum of array
    parity = 1;
 
    // Stores minimum number of operations
    // for Case 1
    int minOperationsCase2 = 0;
 
    for (int i = 0; i < N; i++) {
 
        cur_prefix_2 += A[i];
 
        // Checking both conditions
        if (cur_prefix_2 == 0
            || parity * cur_prefix_2 < 0) {
 
            minOperationsCase2
                += Math.abs(parity - cur_prefix_2);
 
            // Update the current prefix2 to
            // currentPrefixSum
            cur_prefix_2 = parity;
        }
 
        parity *= -1;
    }
 
    return Math.min(minOperationsCase1,
               minOperationsCase2);
}
 
// Driver Code
public static void main(String[] args)
 
{
    int A[] = { 1, -3, 1, 0 };
    int N = A.length;
    System.out.print(minimumOperations(A, N));
}
}
 
// This code is contributed by avijitmondal1998.

Python3




# Python program for the above approach
 
# Function to find the minimum number
# of increments/decrements of array
# elements by 1 to make signs of
# prefix sum array elements alternating
def minimumOperations(A, N) :
     
    # Case 1. neg - pos - neg
    cur_prefix_1 = 0
  
    # Stores the current sign of
    # the prefix sum of array
    parity = -1
  
    # Stores minimum number of operations
    # for Case 1
    minOperationsCase1 = 0
  
    # Traverse the array
    for i in range(N) :
  
        cur_prefix_1 += A[i]
  
        # Checking both conditions
        if (cur_prefix_1 == 0
            or parity * cur_prefix_1 < 0) :
  
            minOperationsCase1 += abs(parity - cur_prefix_1)
  
            # Update the  current prefix1 to
            # currentPrefixSum
            cur_prefix_1 = parity
         
        parity *= -1
     
    # Case 2. pos - neg - pos
    cur_prefix_2 = 0
  
    # Stores the prefix sum of array
    parity = 1
  
    # Stores minimum number of operations
    # for Case 1
    minOperationsCase2 = 0
  
    for i in range(N) :
  
        cur_prefix_2 += A[i]
  
        # Checking both conditions
        if (cur_prefix_2 == 0
            or parity * cur_prefix_2 < 0) :
  
            minOperationsCase2 += abs(parity - cur_prefix_2)
  
            # Update the current prefix2 to
            # currentPrefixSum
            cur_prefix_2 = parity
         
        parity *= -1
     
    return min(minOperationsCase1,
               minOperationsCase2)
 
# Driver Code
 
A = [ 1, -3, 1, 0 ]
N = len(A)
print(minimumOperations(A, N))
 
# This code is contributed by splevel62.

C#




// C# code for above approach
using System;
public class GFG
{
     
// Function to find the minimum number
// of increments/decrements of array
// elements by 1 to make signs of
// prefix sum array elements alternating
static int minimumOperations(int []A, int N)
{
   
    // Case 1. neg - pos - neg
    int cur_prefix_1 = 0;
 
    // Stores the current sign of
    // the prefix sum of array
    int parity = -1;
 
    // Stores minimum number of operations
    // for Case 1
    int minOperationsCase1 = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        cur_prefix_1 += A[i];
 
        // Checking both conditions
        if (cur_prefix_1 == 0
            || parity * cur_prefix_1 < 0) {
 
            minOperationsCase1
                += Math.Abs(parity - cur_prefix_1);
 
            // Update the  current prefix1 to
            // currentPrefixSum
            cur_prefix_1 = parity;
        }
        parity *= -1;
    }
 
    // Case 2. pos - neg - pos
    int cur_prefix_2 = 0;
 
    // Stores the prefix sum of array
    parity = 1;
 
    // Stores minimum number of operations
    // for Case 1
    int minOperationsCase2 = 0;
 
    for (int i = 0; i < N; i++) {
 
        cur_prefix_2 += A[i];
 
        // Checking both conditions
        if (cur_prefix_2 == 0
            || parity * cur_prefix_2 < 0) {
 
            minOperationsCase2
                += Math.Abs(parity - cur_prefix_2);
 
            // Update the current prefix2 to
            // currentPrefixSum
            cur_prefix_2 = parity;
        }
 
        parity *= -1;
    }
 
    return Math.Min(minOperationsCase1,
               minOperationsCase2);
}
 
// Driver Code
public static void Main(String[] args)
 
{
    int []A = { 1, -3, 1, 0 };
    int N = A.Length;
    Console.Write(minimumOperations(A, N));
}
}
 
// This code is contributed by Amit Katiyar

Javascript




<script>
// Javascript program for the above approach
 
// Function to find the minimum number
// of increments/decrements of array
// elements by 1 to make signs of
// prefix sum array elements alternating
function minimumOperations(A, N)
{
 
  // Case 1. neg - pos - neg
  let cur_prefix_1 = 0;
 
  // Stores the current sign of
  // the prefix sum of array
  let parity = -1;
 
  // Stores minimum number of operations
  // for Case 1
  let minOperationsCase1 = 0;
 
  // Traverse the array
  for (let i = 0; i < N; i++) {
    cur_prefix_1 += A[i];
 
    // Checking both conditions
    if (cur_prefix_1 == 0 || parity * cur_prefix_1 < 0) {
      minOperationsCase1 += Math.abs(parity - cur_prefix_1);
 
      // Update the  current prefix1 to
      // currentPrefixSum
      cur_prefix_1 = parity;
    }
    parity *= -1;
  }
 
  // Case 2. pos - neg - pos
  let cur_prefix_2 = 0;
 
  // Stores the prefix sum of array
  parity = 1;
 
  // Stores minimum number of operations
  // for Case 1
  let minOperationsCase2 = 0;
 
  for (let i = 0; i < N; i++) {
    cur_prefix_2 += A[i];
 
    // Checking both conditions
    if (cur_prefix_2 == 0 || parity * cur_prefix_2 < 0) {
      minOperationsCase2 += Math.abs(parity - cur_prefix_2);
 
      // Update the current prefix2 to
      // currentPrefixSum
      cur_prefix_2 = parity;
    }
 
    parity *= -1;
  }
 
  return Math.min(minOperationsCase1, minOperationsCase2);
}
 
// Driver Code
let A = [1, -3, 1, 0];
let N = A.length;
document.write(minimumOperations(A, N));
 
// This code is contributed by _saurabh_jaiswal.
</script>

Output: 

4

 

Time Complexity: O(N)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!