Given an array arr[] of N integers, the task is to sort the array in increasing order by performing minimum number of operations. In a single operation, an element of the array can either be incremented or decremented by 1. Print the minimum number of operations required.
Examples:
Input: arr[] = {5, 4, 3, 2, 1}
Output: 6
Explanation:
The sorted array of arr[] is {3, 3, 3, 3, 3}
Therefore the minimum increments/decrement are:
At index 0, 5 – 3 = 2 (decrement 2)
At index 1, 4 – 3 = 1 (decrement 1)
At index 3, 2 + 1 = 3 (increment 1)
At index 4, 1 + 2 = 3 (increment 2)
The total increment/decrement is 2 + 1 + 1 + 2 = 6.
Input: arr[] = {1, 2, 3, 4}
Output: 0
Explanation:
The array is already sorted.
Bottom-up Approach: This problem can be solved using Dynamic Programming. A Bottom-up Approach to this problem statement is discussed in this article.
Top-Down Approach: Here we will use Top-down Dynamic Programming to solve this problem.
Let 2D array (say dp[i][j]) used to store the upto index i where last element is at index j.
Below are the steps:
- To make the array element in sorted by using the given operations, we know that an element cannot become greater than the maximum value of the array and less than the minimum value of the array(say m) by increment or decrement.
- Therefore, Fix an element(say X) at ith position, then (i-1)th position value(say Y) can be in the range [m, X].
- Keep placing the smaller element less than or equals to arr[i] at (i-1)th position for every index i of arr[] and calculate the minimum increment or decrement by adding abs(arr[i] – Y).
- Therefore the recurrence relation for the above mentioned approach can be written as:
dp[i][j] = min(dp[i][j], abs(arr[i] – Y) + recursive_function(i-1, Y))
where m ≤ Y ≤ arr[j].
Below is the implementation of the above approach:
C++
// C++ program of the above approach #include <bits/stdc++.h> using namespace std; // Dp array to memoized // the value recursive call int dp[1000][1000]; // Function to find the minimum increment // or decrement needed to make the array // sorted int minimumIncDec( int arr[], int N, int maxE, int minE) { // If only one element is present, // then arr[] is sorted if (N == 0) { return 0; } // If dp[N][maxE] is precalculated, // then return the result if (dp[N][maxE]) return dp[N][maxE]; int ans = INT_MAX; // Iterate from minE to maxE which // placed at previous index for ( int k = minE; k <= maxE; k++) { // Update the answer according to // recurrence relation int x = minimumIncDec(arr, N - 1, k, minE); ans = min(ans,x + abs (arr[N - 1] - k)); } // Memoized the value // for dp[N][maxE] dp[N][maxE] = ans; // Return the final result return dp[N][maxE]; } // Driver Code int main() { int arr[] = { 5, 4, 3, 2, 1 }; int N = sizeof (arr) / sizeof (arr[0]); // Find the minimum and maximum // element from the arr[] int minE = *min_element(arr, arr + N); int maxE = *max_element(arr, arr + N); // Function Call cout << minimumIncDec( arr, N, maxE, minE); return 0; } |
Java
// Java program of the above approach import java.util.*; class GFG{ // Dp array to memoized // the value recursive call static int [][]dp = new int [ 1000 ][ 1000 ]; // Function to find the minimum increment // or decrement needed to make the array // sorted static int minimumIncDec( int arr[], int N, int maxE, int minE) { // If only one element is present, // then arr[] is sorted if (N == 0 ) { return 0 ; } // If dp[N][maxE] is precalculated, // then return the result if (dp[N][maxE] != 0 ) return dp[N][maxE]; int ans = Integer.MAX_VALUE; // Iterate from minE to maxE which // placed at previous index for ( int k = minE; k <= maxE; k++) { // Update the answer according to // recurrence relation int x = minimumIncDec(arr, N - 1 , k, minE); ans = Math.min(ans, x + Math.abs(arr[N - 1 ] - k)); } // Memoized the value // for dp[N][maxE] dp[N][maxE] = ans; // Return the final result return dp[N][maxE]; } // Driver Code public static void main(String[] args) { int arr[] = { 5 , 4 , 3 , 2 , 1 }; int N = arr.length; // Find the minimum and maximum // element from the arr[] int minE = Arrays.stream(arr).min().getAsInt(); int maxE = Arrays.stream(arr).max().getAsInt(); // Function call System.out.print(minimumIncDec( arr, N, maxE, minE)); } } // This code is contributed by amal kumar choubey |
Python3
# Python3 program of the above approach import sys # Dp array to memoized # the value recursive call dp = [[ 0 for x in range ( 1000 )] for y in range ( 1000 )] # Function to find the minimum increment # or decrement needed to make the array # sorted def minimumIncDec(arr, N, maxE, minE): # If only one element is present, # then arr[] is sorted if (N = = 0 ): return 0 # If dp[N][maxE] is precalculated, # then return the result if (dp[N][maxE]): return dp[N][maxE] ans = sys.maxsize # Iterate from minE to maxE which # placed at previous index for k in range (minE, maxE + 1 ): # Update the answer according to # recurrence relation x = minimumIncDec(arr, N - 1 , k, minE) ans = min (ans, x + abs (arr[N - 1 ] - k)) # Memoized the value # for dp[N][maxE] dp[N][maxE] = ans # Return the final result return dp[N][maxE] # Driver Code if __name__ = = "__main__" : arr = [ 5 , 4 , 3 , 2 , 1 ] N = len (arr) # Find the minimum and maximum # element from the arr[] minE = min (arr) maxE = max (arr) # Function Call print (minimumIncDec(arr, N, maxE, minE)) # This code is contributed by chitranayal |
C#
// C# program of the above approach using System; using System.Linq; class GFG{ // Dp array to memoized // the value recursive call static int [,]dp = new int [1000, 1000]; // Function to find the minimum increment // or decrement needed to make the array // sorted static int minimumIncDec( int []arr, int N, int maxE, int minE) { // If only one element is present, // then []arr is sorted if (N == 0) { return 0; } // If dp[N,maxE] is precalculated, // then return the result if (dp[N, maxE] != 0) return dp[N, maxE]; int ans = int .MaxValue; // Iterate from minE to maxE which // placed at previous index for ( int k = minE; k <= maxE; k++) { // Update the answer according to // recurrence relation int x = minimumIncDec(arr, N - 1, k, minE); ans = Math.Min(ans, x + Math.Abs(arr[N - 1] - k)); } // Memoized the value // for dp[N,maxE] dp[N, maxE] = ans; // Return the readonly result return dp[N,maxE]; } // Driver Code public static void Main(String[] args) { int []arr = { 5, 4, 3, 2, 1 }; int N = arr.Length; // Find the minimum and maximum // element from the []arr int minE = arr.Min(); int maxE = arr.Max(); // Function call Console.Write(minimumIncDec(arr, N, maxE, minE)); } } // This code is contributed by Rohit_ranjan |
6
Time Complexity: O(N2)
Auxiliary Space: O(N2)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.