Minimum Increment operations to make Array unique
Given an array A[] of integers. In one move you can choose any element A[i], and increment it by 1. The task is to return the minimum number of moves needed to make every value in the array A[] unique.
Examples:
Input: A[] = [3, 2, 1, 2, 1, 7] Output: 6 Explanation: After 6 moves, the array could be [3, 4, 1, 2, 5, 7]. It can be shown that it is impossible for the array to have all unique values with 5 or less moves. Input: A[] = [1, 2, 2] Output: 1 Explanation: After 1 move [2 -> 3], the array could be [1, 2, 3].
A simple solution to make each duplicate value unique is to keep incrementing it repeatedly until it is not unique. However, we might do a lot of extra work, if we have an array of all ones.
So, what we can do instead is to evaluate what our increments should be. If for example, we have [1, 1, 1, 3, 5], we don’t need to process all the increments of duplicated 1’s. We could take two ones (taken = [1, 1]) and continue processing. Whenever we find an empty(unused value) place like 2 or 4 we can then recover that our increment will be 2-1, 4-1 respectively.
Thus, we first count the values and for each possible value X in the array:
- If there are 2 or more values X in A, save the extra duplicated values to increment later.
- If there are 0 values X in A, then a saved value gets incremented to X.
Below is the implementation of the above approach:
C++
// C++ Implementation of above approach #include <bits/stdc++.h> using namespace std; // function to find minimum increment required int minIncrementForUnique( int A[], int n) { // collect frequency of each element map< int , int > dict; set< int > used; // Load Frequency Map (Element -> Count) and Used Set for ( int x = 0; x < n; x++) { int i = A[x]; if (dict[i] != 0) dict[i]++; else { dict[i] = 1; used.insert(i); } } int maxUsed = 0; // Works for +ve numbers int ans = 0; for ( auto entry : dict) { int value = entry.first; int freq = entry.second; if (freq <= 1) // If not a duplicate, skip continue ; int duplicates = freq - 1; // Number of duplicates 1 less than count // Start with next best option for this duplicate: // CurNum + 1 or an earlier maximum number that has // been used int cur = max(value + 1, maxUsed); while (duplicates > 0) { if (used.find(cur) == used.end()) { ans += cur - value; // Number of increments // = Available Spot - // Duplicate Value used.insert(cur); duplicates--; maxUsed = cur; } cur++; } } // return answer return ans; } // Driver code int main() { int A[] = { 3, 2, 1, 2, 1, 2, 6, 7 }; int n = sizeof (A) / sizeof (A[0]); cout << minIncrementForUnique(A, n); } // This code is contributed by Aditya |
Java
// Java Implementation of above approach import java.util.*; class GFG { // function to find minimum increment required static int minIncrementForUnique( int [] A) { // collect frequency of each element TreeMap<Integer, Integer> dict = new TreeMap<Integer, Integer>(); HashSet<Integer> used = new HashSet<Integer>(); // Load Frequency Map (Element -> Count) and Used Set for ( int i : A) { if (dict.containsKey(i)) dict.put(i, dict.get(i) + 1 ); else { dict.put(i, 1 ); used.add(i); } } int maxUsed = 0 ; // Works for +ve numbers int ans = 0 ; for (Map.Entry<Integer, Integer> entry : dict.entrySet()) { int value = entry.getKey(); int freq = entry.getValue(); if (freq <= 1 ) //If not a duplicate, skip continue ; int duplicates = freq - 1 ; // Number of duplicates 1 less than count // Start with next best option for this duplicate: // CurNum + 1 or an earlier maximum number that has been used int cur = Math.max(value + 1 , maxUsed); while (duplicates > 0 ) { if (!used.contains(cur)) { ans += cur - value; // Number of increments = Available Spot - Duplicate Value used.add(cur); duplicates--; maxUsed = cur; } cur++; } } // return answer return ans; } // Driver code public static void main(String[] args) { int [] A = { 3 , 2 , 1 , 2 , 1 , 2 , 6 , 7 }; System.out.print(minIncrementForUnique(A)); } } // This code is contributed by Aditya |
Python3
# Python3 Implementation of above approach import collections # function to find minimum increment required def minIncrementForUnique(A): # collect frequency of each element count = collections.Counter(A) # array of unique values taken taken = [] ans = 0 for x in range ( 100000 ): if count[x] > = 2 : taken.extend([x] * (count[x] - 1 )) elif taken and count[x] = = 0 : ans + = x - taken.pop() # return answer return ans # Driver code A = [ 3 , 2 , 1 , 2 , 1 , 7 ] print (minIncrementForUnique(A)) |
C#
// C# Implementation of above approach using System; using System.Collections.Generic; class GFG { // function to find minimum increment required static int minIncrementForUnique( int []A) { // collect frequency of each element Dictionary< int , int > mpp = new Dictionary< int , int >(); foreach ( int i in A) { if (mpp.ContainsKey(i)) mpp[i] = mpp[i] + 1; else mpp.Add(i, 1); } // array of unique values taken List< int > taken = new List< int >(); int ans = 0; for ( int x = 0; x < 100000; x++) { if (mpp.ContainsKey(x) && mpp[x] >= 2) taken.Add(x * (mpp[x] - 1)); else if (taken.Count > 0 && ((mpp.ContainsKey(x) && mpp[x] == 0)||!mpp.ContainsKey(x))) { ans += x - taken[taken.Count - 1]; taken.RemoveAt(taken.Count - 1); } } // return answer return ans; } // Driver code public static void Main(String[] args) { int []A = {3, 2, 1, 2, 1, 7}; Console.Write(minIncrementForUnique(A)); } } // This code contributed by PrinciRaj1992 |
Javascript
// JavaScript Implementation of above approach function minIncrementForUnique(A) { // collect frequency of each element let mpp = {}; for ( var i of A) { if (mpp.hasOwnProperty(i)) mpp[i] = mpp[i] + 1; else mpp[i] = 1; } // array of unique values taken let taken = []; let ans = 0; for (let x = 0; x < 100000; x++) { if (mpp.hasOwnProperty(x) && mpp[x] >= 2) taken.push([... new Array(mpp[x] - 1).fill(x)]); else if (taken.length > 0 && ((mpp.hasOwnProperty(x) && mpp[x] == 0)||!mpp.hasOwnProperty(x))) { ans += x - taken.pop(); } } // return answer return ans; } // Driver code let A = [ 3, 2, 1, 2, 1, 7 ]; console.log(minIncrementForUnique(A)); // This code is contributed by phasing17 |
12
Time Complexity: O(n*log(n))
Auxiliary Space: O(n)
Another Approach:
This problem can be solved by sorting the array and then iterating through it, comparing each element to the previous element. If the current element is equal to the previous element, increment the current element until it is unique and increment the counter for the number of operations. After iterating through the array, return the counter.
Steps to solve this problem:
1. sort the array from 0 to n in increasing order.
2. declare a variable ops =0.
3. iterate through i=0 till n:
*check if A[i] smaller than equal to A[i-1] than ops+=A[i-1]-A[i]+1 and A[i]=A[i-1]+1.
4. return ops.
Below is the implementation of the above approach:
C++
// C++ Implementation of above approach #include<iostream> #include<algorithm> using namespace std; // function to find minimum increment required int minIncrementForUnique( int A[], int n) { // sort the array in increasing order sort(A,A+n); // counter for no of operations int ops = 0; // iterate over the array for ( int i = 1; i < n; i++) { if (A[i] <= A[i-1]) { ops += A[i-1] - A[i] + 1; A[i] = A[i-1] + 1; } } // return no of operations required return ops; } // Driver code int main() { int A[] = {3, 2, 1, 2, 1, 7}; int n = sizeof (A)/ sizeof (A[0]); cout << "Minimum number of increment operations required: " << minIncrementForUnique(A,n); return 0; } // This code is contributed by Jeetu |
Java
// Java Implementation of above approach import java.util.Arrays; public class MinIncrementForUnique { // function to find minimum increment required public static int minIncrementForUnique( int [] A) { // sort the array in increasing order Arrays.sort(A); // counter for no of operations int ops = 0 ; // iterate over the array for ( int i = 1 ; i < A.length; i++) { if (A[i] <= A[i- 1 ]) { ops += A[i- 1 ] - A[i] + 1 ; A[i] = A[i- 1 ] + 1 ; } } // return no of operations required return ops; } // Driver code public static void main(String[] args) { int [] A = { 3 , 2 , 1 , 2 , 1 , 7 }; System.out.println( "Minimum number of increment operations required: " + minIncrementForUnique(A)); } } // This code is contributed by Jeetu |
Python3
# Python3 Implementation of above approach def minIncrementForUnique(A): # sort the array in increasing order A.sort() #counter for no of operations ops = 0 # iterate over the array for i in range ( 1 , len (A)): if A[i] < = A[i - 1 ]: ops + = A[i - 1 ] - A[i] + 1 A[i] = A[i - 1 ] + 1 #return no of operations required return ops # Driver code A = [ 3 , 2 , 1 , 2 , 1 , 7 ] print ( "Minimum number of increment operations required: " , minIncrementForUnique(A)) # This code is contributed by Jeetu |
C#
// C# Implementation of above approach using System; using System.Linq; class MinIncrementForUnique { // function to find minimum increment required public static int minIncrementForUnique( int [] A) { // sort the array in increasing order Array.Sort(A); // counter for no of operations int ops = 0; // iterate over the array for ( int i = 1; i < A.Length; i++) { if (A[i] <= A[i-1]) { ops += A[i-1] - A[i] + 1; A[i] = A[i-1] + 1; } } // return no of operations required return ops; } // Driver code public static void Main() { int [] A = { 3, 2, 1, 2, 1, 7 }; Console.WriteLine( "Minimum number of increment operations required: " + minIncrementForUnique(A)); } } // This code is contributed by Jeetu |
Javascript
// JavaScript Implementation of above approach function minIncrementForUnique(A) { // sort the array in increasing order A.sort((a, b) => a - b); // counter for no of operations let ops = 0; // iterate over the array for (let i = 1; i < A.length; i++) { if (A[i] <= A[i-1]) { ops += A[i-1] - A[i] + 1; A[i] = A[i-1] + 1; } } // return no of operations required return ops; } // Driver code const A = [3, 2, 1, 2, 1, 7]; console.log(`Minimum number of increment operations required: ${minIncrementForUnique(A)}`); // This code is contributed by Jeetu |
Output
Minimum number of increment operations required: 6
Time Complexity :- O(n*logn)
Space Complexity :- O(1)
Please Login to comment...