Minimum flips required to generate continuous substrings of 0’s and 1’s

Given a binary string S of length N, the task is to find the minimum number of bit flips required to convert the given string such that it contains only continuous substrings of 0’s and 1’s such that the final string is in the form of 000..000, 111..111, 111…000 or 000…111.
Examples: 

Input: S = 000100101, N = 9 
Output:
Explanation: 
000100101 -> 000000001

Input: S = 01100, N = 5 
Output:
Explanation: 
01100 -> 11100

Approach: 
The minimum number of flips can be calculated efficiently in two linear traversals. 
In the first traversal, we will calculate what can be the minimum number of flips required in the worst case, as it can be equal to the number of total 0’s initially
In the second traversal, at every step, the total number of flip required will be the sum of total 1’s before that point and total 0’s after that point. we will take a minimum of all values calculated at every step. 
Hence, to solve the problem, follow the steps below: 

  • Initialize variables count0 = 0, count1 = 0 and res = 0. where, count0 strores count of 0 and count1 stores count of 1 and res stores the bit flips required.
  • Traverse the input string, calculate 0’s and store it in res variable.
  • Traverse the input string and subtract the count of 0 if character 0 is found and store the count of character 1 in variable count1 and updates the res as min(res, count0+count1).

Below is the implementation of the above approach. 



C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
int minChanges(string str, int N)
{
    int res;
    int count0 = 0, count1 = 0;
  
    // Traverse input string
    // and store the count of 0
    for (char x : str) {
        count0 += (x == '0');
    }
    res = count0;
  
    // Traverse the input string again
    // to find minimum number of flips
    for (char x : str) {
        count0 -= (x == '0');
        count1 += (x == '1');
        res = min(res, count1 + count0);
    }
  
    return res;
}
  
// Driver code
int main()
{
    int N = 9;
    string str = "000101001";
  
    cout << minChanges(str, N);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
import java.io.*;
  
class GFG{
  
static int minChanges(String str, int N)
{
    int res;
    int count0 = 0, count1 = 0;
  
    // Traverse input string
    // and store the count of 0
    for(char x : str.toCharArray()) 
    {
       if (x == '0')
           count0++;
    }
    res = count0;
  
    // Traverse the input string again
    // to find minimum number of flips
    for(char x : str.toCharArray()) 
    {
       if (x == '0')
           count0--;
       if (x == '1')
           count1++;
             
       res = Math.min(res, count1 + count0);
    }
    return res;
}
  
// Driver code
public static void main(String[] args)
{
    int N = 9;
    String str = "000101001";
  
    System.out.println(minChanges(str, N));
}
}
  
// This code is contributed by offbeat

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the above approach
def minChanges(str, N):
      
    count0 = 0
    count1 = 0
      
    # Traverse input string
    # and store the count of 0
    for x in str:
        count0 += (x == '0')
  
    res = count0
              
    # Traverse the input string again
    # to find minimum number of flips
    for x in str:
        count0 -= (x == '0')
        count1 += (x == '1')
        res = min(res, count1 + count0)
          
    return res
  
  
# Driver code
N = 9
str = "000101001"
  
print(minChanges(str, N))
  
# This code is contributed by shubhamsingh10

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System;
  
class GFG{
  
static int minChanges(String str, int N)
{
    int res;
    int count0 = 0, count1 = 0;
  
    // Traverse input string
    // and store the count of 0
    for(int i = 0; i < str.Length; i++) 
    {
        if (str[i] == '0')
            count0++;
    }
    res = count0;
  
    // Traverse the input string again
    // to find minimum number of flips
    for(int i = 0; i< str.Length; i++) 
    {
        if (str[i] == '0')
            count0--;
        if (str[i] == '1')
            count1++;
                  
        res = Math.Min(res, count1 + count0);
    }
    return res;
}
  
// Driver code
public static void Main()
{
    int N = 9;
    String str = "000101001";
  
    Console.Write(minChanges(str, N));
}
}
  
// This code is contributed by chitranayal

chevron_right


Output: 

2

Time complexity: O(k), where, k is length of binary string. 
Space complexity: O(1)
 

competitive-programming-img




My Personal Notes arrow_drop_up

Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.