Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Minimum flips required to convert given string into concatenation of equal substrings of length K

  • Last Updated : 28 May, 2021

Given a binary string S and an integer K, the task is to find the minimum number of flips required to convert the given string into a concatenation of K-length equal sub-strings. It is given that the given string can be split into K-length substrings.

Examples: 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: S = “101100101”, K = 3 
Output:
Explanation: 
Flip the ‘0’ from index 5 to ‘1’. 
The resultant string is S = “101101101”. 
It is the concatenation of substring “101”. 
Hence, the minimum number of flips required is 1.



Input: S = “10110111”, K = 4 
Output:
Explanation: 
Flip the ‘0’ and ‘1’ at indexes 4 and 5 respectively. 
The resultant string is S = “10111011”. 
It is the concatenation of the substring “1011”. 
Hence, the minimum number of flips required is 2.

Approach: 
The problem can be solved using Greedy Approach
Follow the steps below:

  • Iterate the given string with increments of K indices from each index and keep a count of the 0s and 1s.
  • The character which occurs the minimum number of times must be flipped and keep incrementing that count.
  • Perform the above steps for all the indices from 0 to K-1 to obtain the minimum number of flips required.

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns the minimum
// number of flips to convert
// the s into a concatenation
// of K-length sub-string
int minOperations(string S, int K)
{
    // Stores the result
    int ans = 0;
 
    // Iterate through string index
    for (int i = 0; i < K; i++) {
 
        // Stores count of 0s & 1s
        int zero = 0, one = 0;
 
        // Iterate making K jumps
        for (int j = i;
             j < S.size(); j += K) {
 
            // Count 0's
            if (S[j] == '0')
                zero++;
 
            // Count 1's
            else
                one++;
        }
 
        // Add minimum flips
        // for index i
        ans += min(zero, one);
    }
 
    // Return minimum number
    // of flips
    return ans;
}
 
// Driver Code
int main()
{
    string S = "110100101";
 
    int K = 3;
 
    cout << minOperations(S, K);
 
    return 0;
}

Java




// Java program to implement
// the above approach
import java.io.*;
 
class GFG{
 
// Function that returns the minimum
// number of flips to convert
// the s into a concatenation
// of K-length sub-string
public static int minOperations(String S, int K)
{
     
    // Stores the result
    int ans = 0;
 
    // Iterate through string index
    for(int i = 0; i < K; i++)
    {
 
        // Stores count of 0s & 1s
        int zero = 0, one = 0;
 
        // Iterate making K jumps
        for(int j = i; j < S.length(); j += K)
        {
             
            // Count 0's
            if (S.charAt(j) == '0')
                zero++;
 
            // Count 1's
            else
                one++;
        }
 
        // Add minimum flips
        // for index i
        ans += Math.min(zero, one);
    }
 
    // Return minimum number
    // of flips
    return ans;
}
 
// Driver Code
public static void main(String args[])
{
    String S = "110100101";
 
    int K = 3;
 
    System.out.println(minOperations(S, K));
}
}
 
// This code is contributed by grand_master

Python3




# Python3 program to implement
# the above approach
 
# Function that returns the minimum
# number of flips to convert the s
# into a concatenation of K-length
# sub-string
def minOperations(S, K):
 
    # Stores the result
    ans = 0
 
    # Iterate through string index
    for i in range(K):
 
        # Stores count of 0s & 1s
        zero, one = 0, 0
 
        # Iterate making K jumps
        for j in range(i, len(S), K):
 
            # Count 0's
            if(S[j] == '0'):
                zero += 1
 
            # Count 1's
            else:
                one += 1
 
        # Add minimum flips
        # for index i
        ans += min(zero, one)
 
    # Return minimum number
    # of flips
    return ans
 
# Driver code
if __name__ == '__main__':
 
    s = "110100101"
    K = 3
 
    print(minOperations(s, K))
 
# This code is contributed by Shivam Singh

C#




// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Function that returns the minimum
// number of flips to convert
// the s into a concatenation
// of K-length sub-string
public static int minOperations(String S, int K)
{
     
    // Stores the result
    int ans = 0;
 
    // Iterate through string index
    for(int i = 0; i < K; i++)
    {
 
        // Stores count of 0s & 1s
        int zero = 0, one = 0;
 
        // Iterate making K jumps
        for(int j = i; j < S.Length; j += K)
        {
             
            // Count 0's
            if (S[j] == '0')
                zero++;
 
            // Count 1's
            else
                one++;
        }
 
        // Add minimum flips
        // for index i
        ans += Math.Min(zero, one);
    }
 
    // Return minimum number
    // of flips
    return ans;
}
 
// Driver Code
public static void Main(String []args)
{
    String S = "110100101";
 
    int K = 3;
 
    Console.WriteLine(minOperations(S, K));
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
      // JavaScript program to implement
      // the above approach
      // Function that returns the minimum
      // number of flips to convert
      // the s into a concatenation
      // of K-length sub-string
      function minOperations(S, K) {
        // Stores the result
        var ans = 0;
 
        // Iterate through string index
        for (var i = 0; i < K; i++) {
          // Stores count of 0s & 1s
          var zero = 0,
            one = 0;
 
          // Iterate making K jumps
          for (var j = i; j < S.length; j += K) {
            // Count 0's
            if (S[j] === "0")
                zero++;
            // Count 1's
            else
                one++;
          }
 
          // Add minimum flips
          // for index i
          ans += Math.min(zero, one);
        }
 
        // Return minimum number
        // of flips
        return ans;
      }
 
      // Driver Code
      var S = "110100101";
      var K = 3;
 
      document.write(minOperations(S, K));
</script>
Output: 
2

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!