Skip to content
Related Articles

Related Articles

Improve Article

Minimum elements to be removed from the ends to make the array sorted

  • Last Updated : 29 Apr, 2021

Given an array arr[] of length N, the task is to remove the minimum number of elements from the ends of the array to make the array non-decreasing. Elements can only be removed from the left or the right end.

Examples: 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {1, 2, 4, 1, 5} 
Output:
We can’t make the array sorted after one removal. 
But if we remove 2 elements from the right end, the 
array becomes {1, 2, 4} which is sorted.
Input: arr[] = {3, 2, 1} 
Output:



Approach: A very simple solution to this problem is to find the length of the longest non-decreasing subarray of the given array. Let’s say the length is L. So, the count of elements that need to be removed will be N – L. The length of the longest non-decreasing subarray can be easily found using the approach discussed in this article.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum number
// of elements to be removed from the ends
// of the array to make it sorted
int findMin(int* arr, int n)
{
 
    // To store the final answer
    int ans = 1;
 
    // Two pointer loop
    for (int i = 0; i < n; i++) {
        int j = i + 1;
 
        // While the array is increasing increment j
        while (j < n and arr[j] >= arr[j - 1])
            j++;
 
        // Updating the ans
        ans = max(ans, j - i);
 
        // Updating the left pointer
        i = j - 1;
    }
 
    // Returning the final answer
    return n - ans;
}
 
// Driver code
int main()
{
    int arr[] = { 3, 2, 1 };
    int n = sizeof(arr) / sizeof(int);
 
    cout << findMin(arr, n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
    // Function to return the minimum number
    // of elements to be removed from the ends
    // of the array to make it sorted
    static int findMin(int arr[], int n)
    {
     
        // To store the final answer
        int ans = 1;
     
        // Two pointer loop
        for (int i = 0; i < n; i++)
        {
            int j = i + 1;
     
            // While the array is increasing increment j
            while (j < n && arr[j] >= arr[j - 1])
                j++;
     
            // Updating the ans
            ans = Math.max(ans, j - i);
     
            // Updating the left pointer
            i = j - 1;
        }
     
        // Returning the final answer
        return n - ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 3, 2, 1 };
        int n = arr.length;
        System.out.println(findMin(arr, n));
    }
}
 
// This code is contributed by AnkitRai01

Python3




# Python3 implementation of the approach
 
# Function to return the minimum number
# of elements to be removed from the ends
# of the array to make it sorted
def findMin(arr, n):
 
    # To store the final answer
    ans = 1
 
    # Two pointer loop
    for i in range(n):
        j = i + 1
 
        # While the array is increasing increment j
        while (j < n and arr[j] >= arr[j - 1]):
            j += 1
 
        # Updating the ans
        ans = max(ans, j - i)
 
        # Updating the left pointer
        i = j - 1
 
    # Returning the final answer
    return n - ans
 
# Driver code
arr = [3, 2, 1]
n = len(arr)
 
print(findMin(arr, n))
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return the minimum number
// of elements to be removed from the ends
// of the array to make it sorted
static int findMin(int []arr, int n)
{
 
    // To store the readonly answer
    int ans = 1;
 
    // Two pointer loop
    for (int i = 0; i < n; i++)
    {
        int j = i + 1;
 
        // While the array is increasing increment j
        while (j < n && arr[j] >= arr[j - 1])
            j++;
 
        // Updating the ans
        ans = Math.Max(ans, j - i);
 
        // Updating the left pointer
        i = j - 1;
    }
 
    // Returning the readonly answer
    return n - ans;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 3, 2, 1 };
    int n = arr.Length;
    Console.WriteLine(findMin(arr, n));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
// Java script implementation of the approach
     
    // Function to return the minimum number
    // of elements to be removed from the ends
    // of the array to make it sorted
    function findMin(arr,n)
    {
     
        // To store the final answer
        let ans = 1;
     
        // Two pointer loop
        for (let i = 0; i < n; i++)
        {
            let j = i + 1;
     
            // While the array is increasing increment j
            while (j < n && arr[j] >= arr[j - 1])
                j++;
     
            // Updating the ans
            ans = Math.max(ans, j - i);
     
            // Updating the left pointer
            i = j - 1;
        }
     
        // Returning the final answer
        return n - ans;
    }
     
    // Driver code
        let arr = [ 3, 2, 1 ];
        let n = arr.length;
        document.write(findMin(arr, n));
     
// This code is contributed by sravan kumar G
</script>
Output: 
2

 

Time Complexity: O(N )

Auxiliary Space: O(1)




My Personal Notes arrow_drop_up
Recommended Articles
Page :