Minimum distance to visit all the nodes of an undirected weighted tree
Given a weighted tree with N nodes starting from 1 to N. The distance between any two nodes is given by the edge weight. Node 1 is the source, the task is to visit all the nodes of the tree with the minimum distance traveled.
Examples:
Input:
u[] = {1, 1, 2, 2, 1}
v[] = {2, 3, 5, 6, 4}
w[] = {1, 4, 2, 50, 5}
Output: 73Input:
u[] = {1, 2}
v[] = {2, 3}
w[] = {3, 1}
Output: 4
Approach: Let’s suppose there are n leaf l1, l2, l3, ……, ln and the cost of the path from root to each leaf is c1, c2, c3, ……, cn.
To travel from l1 to l2 some of the edges will be visited twice ( till the LCA of l1 and l2 all the edges will be visited twice ), for l2 to l3 and some of the edges will be visited ( till the LCA of l2 and l3 all the edges will be visited twice ) twice and similarly every edge of the tree will be visited twice ( observation ).
To minimize the cost of travelling, the maximum cost path from the root to some leaf should be avoided.
Hence the cost = (c1 + c2 + c3 + …… + cn) – max(c1, c2, c3, ……, cn)
min cost = (2 * sum of edge weight) – max(c1, c2, c3, ……, cn)
DFS can be used with some modification to find the largest distance.
Below is the implementation of the above approach:
C++
// C++ implementation of above approach #include <bits/stdc++.h> using namespace std; class Edge{ public : // from - The source of an edge // to - destination of an edge // wt - distance between two nodes int from; int to; long wt; Edge( int a, int b, long w) { from = a; to = b; wt = w; } }; // Method to add an edge between two nodes void add_edge(vector<vector<Edge>> &adj_lis, int to, int from, long wt) { adj_lis[from].push_back(Edge(from, to, wt)); adj_lis[to].push_back(Edge(to, from, wt)); } // DFS method to find distance // between node 1 to other nodes void dfs(vector<vector<Edge>> &adj_lis, long val[], int v, int par, long sum, bool visited[]) { val[v] = sum; visited[v] = true ; for (Edge e : adj_lis[v]) { if (!visited[e.to]) dfs(adj_lis, val, e.to, v, sum + e.wt, visited); } } // Driver code int main() { // Number of nodes // V - Total number of // nodes in a tree int v = 6; // adj_lis - It is used to // make the adjacency list of a tree vector<vector<Edge>> adj_lis(v); // val - This array stores the // distance from node 1 to node 'n' long val[v]; bool visited[v]; int sum = 0; // Edge from a node to another // node with some weight int from[] = { 2, 3, 5, 6, 4 }; int to[] = { 1, 1, 2, 2, 1 }; int wt[] = { 1, 4, 2, 50, 5 }; for ( int i = 0; i < v - 1; i++) { sum += 2 * wt[i]; add_edge(adj_lis, to[i] - 1, from[i] - 1, wt[i]); } dfs(adj_lis, val, 0, -1, 0, visited); long large = INT_MIN; // Loop to find largest // distance in a val. int size = sizeof (val) / sizeof ( long ); for ( int i = 1; i < size; i++) if (val[i] > large) large = val[i]; cout << (sum - large); } // This code is contributed by sanjeev2552 |
Java
// Java implementation of the approach import java.util.LinkedList; import java.util.Scanner; class Graph { class Edge { // from - The source of an edge // to - destination of an edge // wt - distance between two nodes int from; int to; long wt; Edge( int a, int b, long w) { from = a; to = b; wt = w; } } // adj_lis - It is used to // make the adjacency list of a tree // V - Total number of nodes in a tree // val - This array stores the // distance from node 1 to node 'n' static LinkedList<Edge>[] adj_lis; static int V; static long val[]; Graph( int v) { this .V = v; adj_lis = new LinkedList[V]; for ( int i = 0 ; i < V; i++) adj_lis[i] = new LinkedList<>(); } // Method to add an edge between two nodes void add_edge( int to, int from, long wt) { adj_lis[from].add( new Edge(from, to, wt)); adj_lis[to].add( new Edge(to, from, wt)); } // DFS method to find distance // between node 1 to other nodes void dfs( int v, int par, long sum, boolean [] visited) { val[v] = sum; visited[v] = true ; for (Edge e : adj_lis[v]) { if (!visited[e.to]) dfs(e.to, v, sum + e.wt, visited); } } // Driver code public static void main(String a[]) { // Number of nodes int v = 6 ; Graph obj = new Graph(v); val = new long [v]; boolean [] visited = new boolean [v]; int sum = 0 ; // Edge from a node to another // node with some weight int from[] = { 2 , 3 , 5 , 6 , 4 }; int to[] = { 1 , 1 , 2 , 2 , 1 }; int wt[] = { 1 , 4 , 2 , 50 , 5 }; for ( int i = 0 ; i < v - 1 ; i++) { sum += 2 * wt[i]; obj.add_edge(to[i] - 1 , from[i] - 1 , wt[i]); } obj.dfs( 0 , - 1 , 0 , visited); long large = Integer.MIN_VALUE; // Loop to find largest // distance in a val. for ( int i = 1 ; i < val.length; i++) if (val[i] > large) large = val[i]; System.out.println(sum - large); } } |
C#
// C# implementation of above approach using System; using System.Collections.Generic; class Graph { public class Edge { // from - The source of an edge // to - destination of an edge // wt - distance between two nodes public int from ; public int to; public long wt; public Edge( int a, int b, long w) { from = a; to = b; wt = w; } } // adj_lis - It is used to // make the adjacency list of a tree // V - Total number of nodes in a tree // val - This array stores the // distance from node 1 to node 'n' public static List<Edge>[] adj_lis; public static int V; public static long []val; public Graph( int v) { V = v; adj_lis = new List<Edge>[V]; for ( int i = 0; i < V; i++) adj_lis[i] = new List<Edge>(); } // Method to add an edge between two nodes void add_edge( int to, int from , long wt) { adj_lis[ from ].Add( new Edge( from , to, wt)); adj_lis[to].Add( new Edge(to, from , wt)); } // DFS method to find distance // between node 1 to other nodes void dfs( int v, int par, long sum, bool [] visited) { val[v] = sum; visited[v] = true ; foreach (Edge e in adj_lis[v]) { if (!visited[e.to]) dfs(e.to, v, sum + e.wt, visited); } } // Driver code public static void Main(String []a) { // Number of nodes int v = 6; Graph obj = new Graph(v); val = new long [v]; bool []visited = new bool [v]; int sum = 0; // Edge from a node to another // node with some weight int [] from = { 2, 3, 5, 6, 4 }; int []to = { 1, 1, 2, 2, 1 }; int []wt = { 1, 4, 2, 50, 5 }; for ( int i = 0; i < v - 1; i++) { sum += 2 * wt[i]; obj.add_edge(to[i] - 1, from [i] - 1, wt[i]); } obj.dfs(0, -1, 0, visited); long large = int .MinValue; // Loop to find largest // distance in a val. for ( int i = 1; i < val.Length; i++) if (val[i] > large) large = val[i]; Console.WriteLine(sum - large); } } // This code is contributed by Princi Singh |
Javascript
<script> // Javascript implementation of above approach class Edge { // from - The source of an edge // to - destination of an edge // wt - distance between two nodes constructor(a, b, w) { this .from = a; this .to = b; this .wt = w; } } // adj_lis - It is used to // make the adjacency list of a tree // V - Total number of nodes in a tree // val - This array stores the // distance from node 1 to node 'n' var adj_lis = []; var V =0; var val =[]; function Graph(v) { V = v; adj_lis = Array.from(Array(V), ()=>Array()); } // Method to add an edge between two nodes function add_edge(to, from, wt) { adj_lis[from].push( new Edge(from, to, wt)); adj_lis[to].push( new Edge(to, from, wt)); } // DFS method to find distance // between node 1 to other nodes function dfs(v, par, sum, visited) { val[v] = sum; visited[v] = true ; for ( var e of adj_lis[v]) { if (!visited[e.to]) dfs(e.to, v, sum + e.wt, visited); } } // Driver code // Number of nodes var v = 6; Graph(v); val = new Array(v).fill(0); var visited = Array(v).fill( false ); var sum = 0; // Edge from a node to another // node with some weight var from = [2, 3, 5, 6, 4]; var to = [1, 1, 2, 2, 1]; var wt = [1, 4, 2, 50, 5]; for ( var i = 0; i < v - 1; i++) { sum += 2 * wt[i]; add_edge(to[i] - 1, from[i] - 1, wt[i]); } dfs(0, -1, 0, visited); var large = -100000; // Loop to find largest // distance in a val. for ( var i = 1; i < val.length;i++) if (val[i] > large) large = val[i]; document.write(sum - large); </script> |
Python3
# Python 3 implementation of above approach class Edge: # src - The source of an edge # to - destination of an edge # wt - distance between two nodes def __init__( self , a, b, w): self .src = a self .to = b self .wt = w # Method to add an edge between two nodes def add_edge(adj_lis, to, src, wt): adj_lis[src].append(Edge(src, to, wt)) adj_lis[to].append(Edge(to, src, wt)) # DFS method to find distance # between node 1 to other nodes def dfs(adj_lis, val, v, par, sum , visited): val[v] = sum visited[v] = True for e in adj_lis[v]: if ( not visited[e.to]): dfs(adj_lis, val, e.to, v, sum + e.wt, visited) # Driver code if __name__ = = '__main__' : # Number of nodes # V - Total number of # nodes in a tree v = 6 # adj_lis - It is used to # make the adjacency list of a tree adj_lis = [[] for _ in range (v)] # val - This array stores the # distance src node 1 to node 'n' val = [ - 1 ] * v visited = [ False ] * v sum = 0 # Edge src a node to another # node with some weight src = [ 2 , 3 , 5 , 6 , 4 ] to = [ 1 , 1 , 2 , 2 , 1 ] wt = [ 1 , 4 , 2 , 50 , 5 ] for i in range (v - 1 ): sum + = 2 * wt[i] add_edge(adj_lis, to[i] - 1 , src[i] - 1 , wt[i]) dfs(adj_lis, val, 0 , - 1 , 0 , visited) large = - 1e9 # Loop to find largest # distance in a val. size = len (val) for i in range ( 1 ,size): if (val[i] > large): large = val[i] print ( sum - large) # This code is contributed by Amartya Ghosh |
73
Time Complexity: O(N).
Auxiliary Space: O(N).
Please Login to comment...