Skip to content
Related Articles

Related Articles

Improve Article
Minimum distance to the corner of a grid from source
  • Difficulty Level : Medium
  • Last Updated : 13 Feb, 2020

Given a binary grid of order r * c and an initial position. The task is to find the minimum distance from the source to get to the any corner of the grid. A move can be made to a cell grid[i][j] only if grid[i][j] = 0 and only left, right, up and down movements are permitted. If no valid path exists then print -1.

Examples:

Input: i = 1, j = 1, grid[][] = {{0, 0, 1}, {0, 0, 0}, {1, 1, 1}}
Output: 2
(1, 1) -> (1, 0) -> (0, 0)

Input: i = 0, j = 0, grid[][] = {{0, 1}, {1, 1}}
Output: 0
Source is already a corner of the grid.

Approach:



  • If source is already any of the corner then print 0.
  • Start traversing the grid starting with source using BFS as :
    • Insert cell position in queue.
    • Pop element from queue and mark it visited.
    • For each valid move adjacent to popped one, insert the cell position into queue.
    • On each move, update the minimum distance of the cell from initial position.
  • After the completion of the BFS, find the minimum distance from source to every corner.
  • Print the minimum among these in the end.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define row 5
#define col 5
  
// Global variables for grid, minDistance and visited array
int minDistance[row + 1][col + 1], visited[row + 1][col + 1];
  
// Queue for BFS
queue<pair<int, int> > que;
  
// Function to find whether the move is valid or not
bool isValid(int grid[][col], int i, int j)
{
    if (i < 0 || j < 0
        || j >= col || i >= row
        || grid[i][j] || visited[i][j])
        return false;
  
    return true;
}
  
// Function to return the minimum distance
// from source to the end of the grid
int minDistance(int grid[][col],
                           int sourceRow, int sourceCol)
{
    // If source is one of the destinations
    if ((sourceCol == 0 && sourceRow == 0)
        || (sourceCol == col - 1 && sourceRow == 0)
        || (sourceCol == 0 && sourceRow == row - 1)
        || (sourceCol == col - 1 && sourceRow == row - 1))
        return 0;
  
    // Set minimum value
    int minFromSource = row * col;
  
    // Precalculate minDistance of each grid with R * C
    for (int i = 0; i < row; i++)
        for (int j = 0; j < col; j++)
            minDistance[i][j] = row * col;
  
    // Insert source position in queue
    que.push(make_pair(sourceRow, sourceCol));
  
    // Update minimum distance to visit source
    minDistance[sourceRow][sourceCol] = 0;
  
    // Set source to visited
    visited[sourceRow][sourceCol] = 1;
  
    // BFS approach for calculating the minDistance
    // of each cell from source
    while (!que.empty()) {
  
        // Iterate over all four cells adjacent
        // to current cell
        pair<int, int> cell = que.front();
  
        // Initialize position of current cell
        int cellRow = cell.first;
        int cellCol = cell.second;
  
        // Cell below the current cell
        if (isValid(grid, cellRow + 1, cellCol)) {
  
            // Push new cell to the queue
            que.push(make_pair(cellRow + 1, cellCol));
  
            // Update one of its neightbor's distance
            minDistance[cellRow + 1][cellCol]
                = min(minDistance[cellRow + 1][cellCol],
                      minDistance[cellRow][cellCol] + 1);
            visited[cellRow + 1][cellCol] = 1;
        }
  
        // Above the current cell
        if (isValid(grid, cellRow - 1, cellCol)) {
            que.push(make_pair(cellRow - 1, cellCol));
            minDistance[cellRow - 1][cellCol]
                = min(minDistance[cellRow - 1][cellCol],
                      minDistance[cellRow][cellCol] + 1);
            visited[cellRow - 1][cellCol] = 1;
        }
  
        // Right cell
        if (isValid(grid, cellRow, cellCol + 1)) {
            que.push(make_pair(cellRow, cellCol + 1));
            minDistance[cellRow][cellCol + 1]
                = min(minDistance[cellRow][cellCol + 1],
                      minDistance[cellRow][cellCol] + 1);
            visited[cellRow][cellCol + 1] = 1;
        }
  
        // Left cell
        if (isValid(grid, cellRow, cellCol - 1)) {
            que.push(make_pair(cellRow, cellCol - 1));
            minDistance[cellRow][cellCol - 1]
                = min(minDistance[cellRow][cellCol - 1],
                      minDistance[cellRow][cellCol] + 1);
            visited[cellRow][cellCol - 1] = 1;
        }
  
        // Pop the visited cell
        que.pop();
    }
  
    int i;
  
    // Minimum distance to the corner
    // of the first row, first column
    minFromSource = min(minFromSource,
                        minDistance[0][0]);
  
    // Minimum distance to the corner
    // of the last row, first column
    minFromSource = min(minFromSource,
                        minDistance[row - 1][0]);
  
    // Minimum distance to the corner
    // of the last row, last column
    minFromSource = min(minFromSource,
                        minDistance[row - 1][col - 1]);
  
    // Minimum distance to the corner
    // of the first row, last column
    minFromSource = min(minFromSource,
                        minDistance[0][col - 1]);
  
    // If no path exists
    if (minFromSource == row * col)
        return -1;
  
    // Return the minimum distance
    return minFromSource;
}
  
// Driver code
int main()
{
    int sourceRow = 3, sourceCol = 3;
    int grid[row][col] = { 1, 1, 1, 0, 0,
                           0, 0, 1, 0, 1,
                           0, 0, 1, 0, 1,
                           1, 0, 0, 0, 1,
                           1, 1, 0, 1, 0 };
  
    cout << minDistance(grid, sourceRow, sourceCol);
  
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
class GFG
{
      
// Pair class
static class Pair
{
    int first,second;
    Pair(int a, int b)
    {
        first = a;
        second = b;
    }
}
      
static int row = 5;
static int col = 5;
  
// Global variables for grid, minDistance and visited array
static int minDistance[][] = 
            new int[row + 1][col + 1], 
            visited[][] = new int[row + 1][col + 1];
  
// Queue for BFS
static Queue<Pair > que = new LinkedList<>();
  
// Function to find whether the move is valid or not
static boolean isValid(int grid[][], int i, int j)
{
    if (i < 0 || j < 0
        || j >= col || i >= row
        || grid[i][j] != 0 || visited[i][j] != 0)
        return false;
  
    return true;
}
  
// Function to return the minimum distance
// from source to the end of the grid
static int minDistance(int grid[][],
                        int sourceRow, int sourceCol)
{
    // If source is one of the destinations
    if ((sourceCol == 0 && sourceRow == 0)
        || (sourceCol == col - 1 && sourceRow == 0)
        || (sourceCol == 0 && sourceRow == row - 1)
        || (sourceCol == col - 1 && sourceRow == row - 1))
        return 0;
  
    // Set minimum value
    int minFromSource = row * col;
  
    // Precalculate minDistance of each grid with R * C
    for (int i = 0; i < row; i++)
        for (int j = 0; j < col; j++)
            minDistance[i][j] = row * col;
  
    // Insert source position in queue
    que.add(new Pair(sourceRow, sourceCol));
  
    // Update minimum distance to visit source
    minDistance[sourceRow][sourceCol] = 0;
  
    // Set source to visited
    visited[sourceRow][sourceCol] = 1;
  
    // BFS approach for calculating the minDistance
    // of each cell from source
    while (que.size() > 0
    {
  
        // Iterate over all four cells adjacent
        // to current cell
        Pair cell = que.peek();
  
        // Initialize position of current cell
        int cellRow = cell.first;
        int cellCol = cell.second;
  
        // Cell below the current cell
        if (isValid(grid, cellRow + 1, cellCol)) 
        {
  
            // add new cell to the queue
            que.add(new Pair(cellRow + 1, cellCol));
  
            // Update one of its neightbor's distance
            minDistance[cellRow + 1][cellCol]
                = Math.min(minDistance[cellRow + 1][cellCol],
                    minDistance[cellRow][cellCol] + 1);
            visited[cellRow + 1][cellCol] = 1;
        }
  
        // Above the current cell
        if (isValid(grid, cellRow - 1, cellCol)) 
        {
            que.add(new Pair(cellRow - 1, cellCol));
            minDistance[cellRow - 1][cellCol]
                = Math.min(minDistance[cellRow - 1][cellCol],
                    minDistance[cellRow][cellCol] + 1);
            visited[cellRow - 1][cellCol] = 1;
        }
  
        // Right cell
        if (isValid(grid, cellRow, cellCol + 1))
        {
            que.add(new Pair(cellRow, cellCol + 1));
            minDistance[cellRow][cellCol + 1]
                = Math.min(minDistance[cellRow][cellCol + 1],
                    minDistance[cellRow][cellCol] + 1);
            visited[cellRow][cellCol + 1] = 1;
        }
  
        // Left cell
        if (isValid(grid, cellRow, cellCol - 1))
        {
            que.add(new Pair(cellRow, cellCol - 1));
            minDistance[cellRow][cellCol - 1]
                = Math.min(minDistance[cellRow][cellCol - 1],
                    minDistance[cellRow][cellCol] + 1);
            visited[cellRow][cellCol - 1] = 1;
        }
  
        // remove the visited cell
        que.remove();
    }
  
    int i;
  
    // Minimum distance to the corner
    // of the first row, first column
    minFromSource = Math.min(minFromSource,
                        minDistance[0][0]);
  
    // Minimum distance to the corner
    // of the last row, first column
    minFromSource = Math.min(minFromSource,
                        minDistance[row - 1][0]);
  
    // Minimum distance to the corner
    // of the last row, last column
    minFromSource = Math.min(minFromSource,
                        minDistance[row - 1][col - 1]);
  
    // Minimum distance to the corner
    // of the first row, last column
    minFromSource = Math.min(minFromSource,
                        minDistance[0][col - 1]);
  
    // If no path exists
    if (minFromSource == row * col)
        return -1;
  
    // Return the minimum distance
    return minFromSource;
}
  
  
// Driver code
public static void main(String args[])
{
    int sourceRow = 3, sourceCol = 3;
    int grid[][] = { {1, 1, 1, 0, 0},
                    {0, 0, 1, 0, 1},
                    {0, 0, 1, 0, 1},
                    {1, 0, 0, 0, 1},
                    {1, 1, 0, 1, 0} };
  
    System.out.println(minDistance(grid, sourceRow, sourceCol));
}
}
  
// This code is contributed by Arnab Kundu

Python3




# Python 3 implementation of the approach
  
row = 5
col = 5
  
# Global variables for grid, minDistance and visited array
minDistance = [[0 for i in range(col+1)] for j in range(row+1)]
visited = [[0 for i in range(col+1)]for j in range(row+1)]
  
# Queue for BFS
que = [[0,0]]
  
# Function to find whether the move is valid or not
def isValid(grid,i,j):
    if (i < 0 or j < 0 or j >= col or 
        i >= row or grid[i][j] or visited[i][j]):
        return False
    return True
  
# Function to return the minimum distance
# from source to the end of the grid
def minDistance1(grid,sourceRow,sourceCol):
    # If source is one of the destinations
    if ((sourceCol == 0 and sourceRow == 0) or
        (sourceCol == col - 1 and sourceRow == 0) or
        (sourceCol == 0 or sourceRow == row - 1) or 
        (sourceCol == col - 1 and sourceRow == row - 1)):
        return 0
  
    # Set minimum value
    minFromSource = row * col
  
    # Precalculate minDistance of each grid with R * C
    for i in range(row):
        for j in range(col):
            minDistance[i][j] = row * col
  
    # Insert source position in queue
    que.append([sourceRow, sourceCol])
  
    # Update minimum distance to visit source
    minDistance[sourceRow][sourceCol] = 0
  
    # Set source to visited
    visited[sourceRow][sourceCol] = 1
  
    # BFS approach for calculating the minDistance
    # of each cell from source
    while (len(que)!=0):
        # Iterate over all four cells adjacent
        # to current cell
        cell = que[0]
  
        # Initialize position of current cell
        cellRow = cell[0]
        cellCol = cell[1]
  
        # Cell below the current cell
        if (isValid(grid, cellRow + 1, cellCol)):
            # Push new cell to the queue
            que.append([cellRow + 1, cellCol])
  
            # Update one of its neightbor's distance
            minDistance[cellRow + 1][cellCol] = min(minDistance[cellRow + 1][cellCol], 
                                                minDistance[cellRow][cellCol] + 1)
            visited[cellRow + 1][cellCol] = 1
  
        # Above the current cell
        if (isValid(grid, cellRow - 1, cellCol)):
            que.append([cellRow - 1, cellCol])
            minDistance[cellRow - 1][cellCol] = min(minDistance[cellRow - 1][cellCol], 
                                                    minDistance[cellRow][cellCol] + 1)
            visited[cellRow - 1][cellCol] = 1
  
        # Right cell
        if (isValid(grid, cellRow, cellCol + 1)):
            que.append([cellRow, cellCol + 1])
            minDistance[cellRow][cellCol + 1] = min(minDistance[cellRow][cellCol + 1], 
                                                    minDistance[cellRow][cellCol] + 1)
            visited[cellRow][cellCol + 1] = 1
  
        # Left cell
        if (isValid(grid, cellRow, cellCol - 1)):
            que.append([cellRow, cellCol - 1])
            minDistance[cellRow][cellCol - 1]= min(minDistance[cellRow][cellCol - 1],
                                                minDistance[cellRow][cellCol] + 1)
            visited[cellRow][cellCol - 1] = 1
  
        # Pop the visited cell
        que.remove(que[0])
  
    # Minimum distance to the corner
    # of the first row, first column
    minFromSource = min(minFromSource, minDistance[0][0])
  
    # Minimum distance to the corner
    # of the last row, first column
    minFromSource = min(minFromSource, minDistance[row - 1][0])
  
    # Minimum distance to the corner
    # of the last row, last column
    minFromSource = min(minFromSource,minDistance[row - 1][col - 1])
  
    # Minimum distance to the corner
    # of the first row, last column
    minFromSource = min(minFromSource, minDistance[0][col - 1])
  
    # If no path exists
    if (minFromSource == row * col):
        return -1
  
    # Return the minimum distance
    return minFromSource
  
# Driver code
if __name__ == '__main__':
    sourceRow = 3
    sourceCol = 3
    grid = [[1, 1, 1, 0, 0],
            [0, 0, 1, 0, 1],
            [0, 0, 1, 0, 1],
            [1, 0, 0, 0, 1],
            [1, 1, 0, 1, 0]]
  
    print(minDistance1(grid, sourceRow, sourceCol))
  
# This code is contributed by
# Surendra_Gangwar
Output:
4

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :