Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Minimum distance between the maximum and minimum element of a given Array

  • Difficulty Level : Medium
  • Last Updated : 12 May, 2021

Given an array A[] consisting of N elements, the task is to find the minimum distance between the minimum and the maximum element of the array.
Examples:  

Input: arr[] = {3, 2, 1, 2, 1, 4, 5, 8, 6, 7, 8, 2} 
Output:
Explanation: 
The minimum element(= 1) is present at indices {2, 4} 
The maximum element(= 8) is present at indices {7, 10}. 
The minimum distance between an occurrence of 1 and 8 is 7 – 4 = 3
Input: arr[] = {1, 3, 69} 
Output:
Explanation: 
The minimum element(= 1) is present at index 0. 
The maximum element(= 69) is present at index 2. 
Therefore, the minimum distance between them is 2. 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Naive Approach: 
The simplest approach to solve this problem is as follows:  



  • Find the minimum and maximum elements of the array.
  • Traverse the array and for every occurrence of the maximum element, calculate its distance from all occurrences of the minimum element in the array and update the minimum distance.
  • After complete traversal of the array, print all the minimum distance obtained.

Time Complexity: O(N2
Auxiliary Space: O(1) 
Efficient Approach: 
Follow the steps below to optimize the above approach:  

  • Traverse the array to find the minimum and maximum elements.
  • Initialize two variables min_index and max_index to store the indices of the minimum and maximum elements of the array respectively. Initialize them with -1.
  • Traverse the array. If at any instant, both min_index and max_index is not equal to -1, i.e. both of them have stored a valid index, calculate there a difference.
  • Compare this difference with the minimum distance(say, min_dist) and update min_dist accordingly.
  • Finally, print the final value of min_dist obtained after the complete traversal of the array.

Below is the implementation of the above approach: 

C++




// C++ Program to implement the
// above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum
// distance between the minimum
// and the maximum element
int minDistance(int a[], int n)
{
    // Stores the minimum and maximum
    // array element
    int maximum = -1, minimum = INT_MAX;
 
    // Stores the most recently traversed
    // indices of the minimum and the
    // maximum element
    int min_index = -1, max_index = -1;
 
    // Stores the minimum distance
    // between the minimum and the
    // maximium
    int min_dist = n + 1;
 
    // Find the maximum and
    // the minimum element
    // from the given array
    for (int i = 0; i < n; i++) {
 
        if (a[i] > maximum)
            maximum = a[i];
 
        if (a[i] < minimum)
            minimum = a[i];
    }
 
    // Find the minimum distance
    for (int i = 0; i < n; i++) {
 
        // Check if current element
        // is equal to minimum
        if (a[i] == minimum)
            min_index = i;
 
        // Check if current element
        // is equal to maximum
        if (a[i] == maximum)
            max_index = i;
 
        // If both the minimum and the
        // maximum element has
        // occurred at least once
        if (min_index != -1
            && max_index != -1)
 
            // Update the minimum distance
            min_dist
                = min(min_dist,
                      abs(min_index
                          - max_index));
    }
 
    // Return the answer
    return min_dist;
}
 
// Driver Code
int main()
{
    int a[] = { 3, 2, 1, 2, 1, 4,
                5, 8, 6, 7, 8, 2 };
    int n = sizeof a / sizeof a[0];
    cout << minDistance(a, n);
}

Java




// Java Program to implement
// the above approach
import java.util.*;
class GFG {
 
    // Function to find the minimum
    // distance between the minimum
    // and the maximum element
    public static int minDistance(int a[], int n)
    {
 
        // Stores the minimum and maximum
        // array element
        int max = -1, min = Integer.MAX_VALUE;
 
        // Stores the most recently traversed
        // indices of the minimum and the
        // maximum element
        int min_index = -1, max_index = -1;
 
        // Stores the minimum distance
        // between the minimum and the
        // maximium
        int min_dist = n + 1;
 
        // Find the maximum and
        // the minimum element
        // from the given array
        for (int i = 0; i < n; i++) {
            if (a[i] > max)
                max = a[i];
            if (a[i] < min)
                min = a[i];
        }
 
        // Find the minimum distance
        for (int i = 0; i < n; i++) {
 
            // Check if current element
            // is equal to minimum
            if (a[i] == min)
                min_index = i;
 
            // Check if current element
            // is equal to maximum
            if (a[i] == max)
                max_index = i;
 
            // If both the minimum and the
            // maximum element has
            // occurred at least once
            if (min_index != -1
                && max_index != -1)
                min_dist
                    = Math.min(min_dist,
                               Math.abs(min_index
                                        - max_index));
        }
        return min_dist;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int n = 12;
        int a[] = { 3, 2, 1, 2, 1, 4,
                    5, 8, 6, 7, 8, 2 };
        System.out.println(minDistance(a, n));
    }
}

Python3




# Python3 Program to implement the
# above approach
import sys
 
# Function to find the minimum
# distance between the minimum
# and the maximum element
def minDistance(a, n):
 
    # Stores the minimum and maximum
    # array element
    maximum = -1
    minimum = sys.maxsize
  
    # Stores the most recently traversed
    # indices of the minimum and the
    # maximum element
    min_index = -1
    max_index = -1
  
    # Stores the minimum distance
    # between the minimum and the
    # maximium
    min_dist = n + 1
  
    # Find the maximum and
    # the minimum element
    # from the given array
    for i in range (n):
        if (a[i] > maximum):
            maximum = a[i]
 
        if (a[i] < minimum):
            minimum = a[i]
  
    # Find the minimum distance
    for i in range (n):
  
        # Check if current element
        # is equal to minimum
        if (a[i] == minimum):
            min_index = i
  
        # Check if current element
        # is equal to maximum
        if (a[i] == maximum):
            max_index = i
  
        # If both the minimum and the
        # maximum element has
        # occurred at least once
        if (min_index != -1 and
            max_index != -1):
  
            # Update the minimum distance
            min_dist = (min(min_dist,
                        abs(min_index -
                            max_index)))
  
    # Return the answer
    return min_dist
  
# Driver Code
if __name__ == "__main__":
 
    a = [3, 2, 1, 2, 1, 4,
         5, 8, 6, 7, 8, 2]
    n = len(a)
    print (minDistance(a, n))
 
# This code is contributed by Chitranayal

C#




// C# program to implement
// the above approach
using System;
 
class GFG{
     
// Function to find the minimum
// distance between the minimum
// and the maximum element
static int minDistance(int []a, int n)
{
     
    // Stores the minimum and maximum
    // array element
    int max = -1, min = Int32.MaxValue;
 
    // Stores the most recently traversed
    // indices of the minimum and the
    // maximum element
    int min_index = -1, max_index = -1;
 
    // Stores the minimum distance
    // between the minimum and the
    // maximium
    int min_dist = n + 1;
 
    // Find the maximum and
    // the minimum element
    // from the given array
    for(int i = 0; i < n; i++)
    {
        if (a[i] > max)
            max = a[i];
        if (a[i] < min)
            min = a[i];
    }
 
    // Find the minimum distance
    for(int i = 0; i < n; i++)
    {
        // Check if current element
        // is equal to minimum
        if (a[i] == min)
            min_index = i;
 
        // Check if current element
        // is equal to maximum
        if (a[i] == max)
            max_index = i;
 
        // If both the minimum and the
        // maximum element has
        // occurred at least once
        if (min_index != -1 && max_index != -1)
            min_dist = Math.Min(min_dist,
                                Math.Abs(
                                min_index -
                                max_index));
    }
    return min_dist;
}
 
// Driver Code
public static void Main()
{
    int n = 12;
    int []a = { 3, 2, 1, 2, 1, 4,
                5, 8, 6, 7, 8, 2 };
                 
    Console.WriteLine(minDistance(a, n));
}
}
 
// This code is contributed by piyush3010

Javascript




<script>
 
// Javascript program to implement
// the above approach
 
    // Function to find the minimum
    // distance between the minimum
    // and the maximum element
   function minDistance(a, n)
    {
  
        // Stores the minimum and maximum
        // array element
        let max = -1, min = Number.MAX_VALUE;
  
        // Stores the most recently traversed
        // indices of the minimum and the
        // maximum element
        let min_index = -1, max_index = -1;
  
        // Stores the minimum distance
        // between the minimum and the
        // maximium
        let min_dist = n + 1;
  
        // Find the maximum and
        // the minimum element
        // from the given array
        for (let i = 0; i < n; i++) {
            if (a[i] > max)
                max = a[i];
            if (a[i] < min)
                min = a[i];
        }
  
        // Find the minimum distance
        for (let i = 0; i < n; i++) {
  
            // Check if current element
            // is equal to minimum
            if (a[i] == min)
                min_index = i;
  
            // Check if current element
            // is equal to maximum
            if (a[i] == max)
                max_index = i;
  
            // If both the minimum and the
            // maximum element has
            // occurred at least once
            if (min_index != -1
                && max_index != -1)
                min_dist
                    = Math.min(min_dist,
                               Math.abs(min_index
                                        - max_index));
        }
        return min_dist;
    }
    
    // Driver Code
           
        let n = 12;
        let a = [ 3, 2, 1, 2, 1, 4,
                    5, 8, 6, 7, 8, 2 ];
        document.write(minDistance(a, n));
 
</script>
Output: 
3

 

Time Complexity: O(N) 
Auxiliary Space: O(1) 




My Personal Notes arrow_drop_up
Recommended Articles
Page :