Skip to content
Related Articles

Related Articles

Minimum cost to merge numbers from 1 to N
  • Difficulty Level : Medium
  • Last Updated : 04 Feb, 2021

Given an integer N, the task is to find the minimum cost to merge all the numbers from 1 to N where the cost of merging two set of numbers A and B is equal to the product of the product of the numbers in the respective sets.

Examples:  

Input: N = 4 
Output: 32
Merging {1} and {2} costs 1 * 2 = 2 
Merging {1, 2} and {3} costs 2 * 3 = 6 
Merge{1, 2, 3} and {4} costs 6 * 4 = 24 
Hence, the minimal cost is 2 + 6 + 24 = 32

Input: N = 2 
Output:

Approach: 



  • The first approach that comes in our mind is sorting. We take first two smallest elements and add them, then continue adding to the rest of the elements in the sorted array. But it fails when the current running sum exceeds the next smallest value in the array coming next.
Take N = 5,
If we take the sorting approach, then-
Merge {1} and {2} - 1 * 2 = 2
Merge {1, 2} and {3} - 2 * 3 = 6
Merge{1, 2, 3} and {4} - 6 * 4 = 24
Merge{1, 2, 3, 4} and {5} - 24 * 5 = 120
Total sum = 152
But optimal way is,
Merge {1} and {2} - 1 * 2 = 2
Merge {1, 2} and {3} - 2 * 3 = 6
Merge {4} and {5} - 4 * 5 = 20
Merge {1, 2, 3} and {4, 5} - 6 * 20 = 120
Total sum = 148
This is the minimal answer.
  • So, the correct approach to solve this problem is the Min-heap based approach. Initially, we push all the numbers from 1 to N into the Min-Heap. 
  • At every iteration, we extract the minimum and the second minimum element from the Min-Heap and insert their product back into it. This ensures that the addition cost generated will be minimum
  • We keep on repeating the above step until there is only one element remaining in the Min-Heap. The calculated sum till that instant gives us the required answer. 

Below is the implementation of the above approach: 

C++




// C++ program to find the Minimum
// cost to merge numbers
// from 1 to N.
#include <bits/stdc++.h>
using namespace std;
 
// Function returns the
// minimum cost
int GetMinCost(int N)
{
 
    // Min Heap representation
    priority_queue<int, vector<int>,
                   greater<int> > pq;
 
    // Add all elements to heap
    for (int i = 1; i <= N; i++) {
        pq.push(i);
    }
     
    int cost = 0;
     
    while (pq.size() > 1)
    {
        // First minimum
        int mini = pq.top();
        pq.pop();
 
        // Second minimum
        int secondmini = pq.top();
        pq.pop();
 
        // Multiply them
        int current = mini * secondmini;
 
        // Add to the cost
        cost += current;
 
        // Push the product into the
        // heap again
        pq.push(current);
    }
 
    // Return the optimal cost
    return cost;
}
 
// Driver code
int main()
{
    int N = 5;
    cout << GetMinCost(N);
}

Java




// Java program for the above approach
import java.util.*;
 
class GFG {
 
// Function returns the
// minimum cost
static int GetMinCost(int N)
{
 
    // Min Heap representation
    PriorityQueue<Integer> pq;
    pq = new PriorityQueue<>();
 
    // Add all elements to heap
    for(int i = 1; i <= N; i++)
    {
       pq.add(i);
    }
 
    int cost = 0;
 
    while (pq.size() > 1)
    {
         
        // First minimum
        int mini = pq.remove();
     
        // Second minimum
        int secondmini = pq.remove();
     
        // Multiply them
        int current = mini * secondmini;
     
        // Add to the cost
        cost += current;
     
        // Push the product into the
        // heap again
        pq.add(current);
    }
     
    // Return the optimal cost
    return cost;
}
 
// Driver Code
public static void main(String args[])
{
    int N = 5;
 
    // Function call
    System.out.println(GetMinCost(N));
}
}
 
// This code is contributed by rutvik_56

Python3




# python3 program to find the Minimum
# cost to merge numbers
# from 1 to N.
 
# Function returns the
# minimum cost
def GetMinCost(N):
     
    # Min Heap representation
    pq = []
 
    # Add all elements to heap
    for i in range(1, N+1, 1):
        pq.append(i)
 
    pq.sort(reverse = False)
     
    cost = 0
     
    while (len(pq) > 1):
         
        # First minimum
        mini = pq[0]
        pq.remove(pq[0])
 
        # Second minimum
        secondmini = pq[0]
        pq.remove(pq[0])
 
        # Multiply them
        current = mini * secondmini
 
        # Add to the cost
        cost += current
 
        # Push the product into the
        # heap again
        pq.append(current)
        pq.sort(reverse = False)
 
    # Return the optimal cost
    return cost
 
# Driver code
if __name__ == '__main__':
     
    N = 5
    print(GetMinCost(N))
 
# This code is contributed by Bhupendra_Singh

C#




// C# program to find the Minimum 
// cost to merge numbers 
// from 1 to N.
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function returns the 
// minimum cost
static int GetMinCost(int N)
{
     
    // Min Heap representation
    List<int> pq = new List<int>();
   
    // Add all elements to heap
    for(int i = 1; i <= N; i++)
    {
        pq.Add(i);
    }
       
    int cost = 0;
    pq.Sort();
     
    while (pq.Count > 1)
    {
         
        // First minimum
        int mini = pq[0];
        pq.RemoveAt(0);
   
        // Second minimum
        int secondmini = pq[0];
        pq.RemoveAt(0);
   
        // Multiply them
        int current = mini * secondmini;
   
        // Add to the cost
        cost += current;
   
        // Push the product into the
        // heap again
        pq.Add(current);
        pq.Sort();
    }
     
    // Return the optimal cost
    return cost;
}
 
// Driver code
static void Main()
{
    int N = 5;
     
    Console.WriteLine(GetMinCost(N));
}
}
 
// This code is contributed by divyeshrabadiya07
Output: 
148

 

Time Complexity: O(NlogN) 
Auxiliary Space: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live and Geeks Classes Live USA

My Personal Notes arrow_drop_up
Recommended Articles
Page :