Minimum cost required to convert all Subarrays of size K to a single element

Prerequisite: Sliding Window Median

Given an array arr[] consisting of N integers and an integer K, the task is to find the minimum cost required to make each element of every subarray of length K equal. Cost of replacing any array element by another element is the absolute difference between the two.

Examples:

Input: A[] = {1, 2, 3, 4, 6}, K = 3
Output: 7
Explanation:
Subarray 1: Cost to convert subarray {1, 2, 3} to {2, 2, 2} = |1-2| + |2-2| + |3-2| = 2
Subarray 2: Cost to convert subarray {2, 3, 4} to {3, 3, 3} = |2-3| + |3-3| + |4-3| = 2
Subarray 3: Cost to convert subarray {3, 4, 6} to {4, 4, 4} = |3-4| + |4-4| + |6-4| = 3
Minimum Cost = 2 + 2 + 3 = 7/

Input: A[] = {2, 3, 4, 4, 1, 7, 6}, K = 4
Output: 21



Approach:
To find the minimum cost to convert each element of the subarray to a single element, change every element of the subarray to the median of that subarray. Follow the steps below to solve the problem:

Below is the implementation for the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the minimum
// cost to convert each element of
// every subarray of size K equal
int minimumCost(vector<int> arr, int n,
                int k)
{
    // Stores the minimum cost
    int totalcost = 0;
    int i, j;
  
    // Stores the first K elements
    multiset<int> mp(arr.begin(),
                     arr.begin() + k);
  
    if (k == n) {
  
        // Obtain the middle element of
        // the multiset
        auto mid = next(mp.begin(),
                        n / 2 - ((k + 1) % 2));
  
        int z = *mid;
  
        // Calculate cost for the subarray
        for (i = 0; i < n; i++)
            totalcost += abs(z - arr[i]);
  
        // Return the total cost
        return totalcost;
    }
    else {
  
        // Obtain the middle element
        // in multiset
        auto mid = next(mp.begin(),
                        k / 2 - ((k + 1) % 2));
  
        for (i = k; i < n; i++) {
  
            int zz = *mid;
            int cost = 0;
            for (j = i - k; j < i; j++) {
  
                // Cost for the previous
                // k length subarray
                cost += abs(arr[j] - zz);
            }
            totalcost += cost;
  
            // Insert current element
            // into multiset
            mp.insert(arr[i]);
  
            if (arr[i] < *mid) {
  
                // New element appears
                // to the left of mid
                mid--;
            }
  
            if (arr[i - k] <= *mid) {
  
                // New element appears
                // to the right of mid
                mid++;
            }
  
            // Remove leftmost element
            // from the window
            mp.erase(mp.lower_bound(arr[i - k]));
  
            // For last element
            if (i == n - 1) {
                zz = *mid;
                cost = 0;
  
                for (j = i - k + 1;
                     j <= i; j++) {
  
                    // Calculate cost for the subarray
                    cost += abs(zz - arr[j]);
                }
  
                totalcost += cost;
            }
        }
  
        // Return the total cost
        return totalcost;
    }
}
  
// Driver Code
int main()
{
    int N = 5, K = 3;
  
    vector<int> A({ 1, 2, 3, 4, 6 });
  
    cout << minimumCost(A, N, K);
}
chevron_right

Output:
7


Time Complexity: O(NlogN)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.


Article Tags :