Skip to content
Related Articles

Related Articles

Improve Article

Minimum cost required to convert all Subarrays of size K to a single element

  • Difficulty Level : Expert
  • Last Updated : 12 Jun, 2021

Prerequisite: Sliding Window Median
Given an array arr[] consisting of N integers and an integer K, the task is to find the minimum cost required to make each element of every subarray of length K equal. Cost of replacing any array element by another element is the absolute difference between the two.
Examples: 
 

Input: A[] = {1, 2, 3, 4, 6}, K = 3 
Output:
Explanation: 
Subarray 1: Cost to convert subarray {1, 2, 3} to {2, 2, 2} = |1-2| + |2-2| + |3-2| = 2 
Subarray 2: Cost to convert subarray {2, 3, 4} to {3, 3, 3} = |2-3| + |3-3| + |4-3| = 2 
Subarray 3: Cost to convert subarray {3, 4, 6} to {4, 4, 4} = |3-4| + |4-4| + |6-4| = 3 
Minimum Cost = 2 + 2 + 3 = 7/
Input: A[] = {2, 3, 4, 4, 1, 7, 6}, K = 4 
Output: 21 
 

 

Approach: 
To find the minimum cost to convert each element of the subarray to a single element, change every element of the subarray to the median of that subarray. Follow the steps below to solve the problem: 
 

  • To find the median for each running subarray efficiently, use a multiset to get the sorted order of elements in each subarray. Median will be the middle element of this multiset.
  • For the next subarray remove the leftmost element of the previous subarray from the multiset, add the current element to the multiset.
  • Keep a pointer mid to efficiently keep track of the middle element of the multiset.
  • If the newly added element is smaller than the previous middle element, move mid to its immediate smaller element. Otherwise, move mid to its immediate next element.
  • Calculate cost of replacing every element of the subarray by the equation | A[i] – medianeach_subarray |.
  • Finally print the total cost.

Below is the implementation for the above approach:
 



C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum
// cost to convert each element of
// every subarray of size K equal
int minimumCost(vector<int> arr, int n,
                int k)
{
    // Stores the minimum cost
    int totalcost = 0;
    int i, j;
 
    // Stores the first K elements
    multiset<int> mp(arr.begin(),
                     arr.begin() + k);
 
    if (k == n) {
 
        // Obtain the middle element of
        // the multiset
        auto mid = next(mp.begin(),
                        n / 2 - ((k + 1) % 2));
 
        int z = *mid;
 
        // Calculate cost for the subarray
        for (i = 0; i < n; i++)
            totalcost += abs(z - arr[i]);
 
        // Return the total cost
        return totalcost;
    }
    else {
 
        // Obtain the middle element
        // in multiset
        auto mid = next(mp.begin(),
                        k / 2 - ((k + 1) % 2));
 
        for (i = k; i < n; i++) {
 
            int zz = *mid;
            int cost = 0;
            for (j = i - k; j < i; j++) {
 
                // Cost for the previous
                // k length subarray
                cost += abs(arr[j] - zz);
            }
            totalcost += cost;
 
            // Insert current element
            // into multiset
            mp.insert(arr[i]);
 
            if (arr[i] < *mid) {
 
                // New element appears
                // to the left of mid
                mid--;
            }
 
            if (arr[i - k] <= *mid) {
 
                // New element appears
                // to the right of mid
                mid++;
            }
 
            // Remove leftmost element
            // from the window
            mp.erase(mp.lower_bound(arr[i - k]));
 
            // For last element
            if (i == n - 1) {
                zz = *mid;
                cost = 0;
 
                for (j = i - k + 1;
                     j <= i; j++) {
 
                    // Calculate cost for the subarray
                    cost += abs(zz - arr[j]);
                }
 
                totalcost += cost;
            }
        }
 
        // Return the total cost
        return totalcost;
    }
}
 
// Driver Code
int main()
{
    int N = 5, K = 3;
 
    vector<int> A({ 1, 2, 3, 4, 6 });
 
    cout << minimumCost(A, N, K);
}
Output: 
7

 

Time Complexity: O(NlogN) 
Auxiliary Space: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :