Related Articles
Minimum Cost Path with Left, Right, Bottom and Up moves allowed
• Difficulty Level : Hard
• Last Updated : 29 Apr, 2021

Given a two dimensional grid, each cell of which contains integer cost which represents a cost to traverse through that cell, we need to find a path from top left cell to bottom right cell by which total cost incurred is minimum.
Note : It is assumed that negative cost cycles do not exist in input matrix.
This problem is extension of below problem.
Min Cost Path with right and bottom moves allowed.
In previous problem only going right and bottom was allowed but in this problem we are allowed to go bottom, up, right and left i.e. in all 4 direction.
Examples:

```A cost grid is given in below diagram, minimum
cost to reach bottom right from top left
is 327 (= 31 + 10 + 13 + 47 + 65 + 12 + 18 +
6 + 33 + 11 + 20 + 41 + 20)

The chosen least cost path is shown in green.```

It is not possible to solve this problem using dynamic programming similar to previous problem because here current state depends not only on right and bottom cells but also on left and upper cells. We solve this problem using dijkstra’s algorithm. Each cell of grid represents a vertex and neighbor cells adjacent vertices. We do not make an explicit graph from these cells instead we will use matrix as it is in our dijkstra’s algorithm.
In below code Dijkstra’ algorithm’s implementation is used. The code implemented below is changed to cope with matrix represented implicit graph. Please also see use of dx and dy arrays in below code, these arrays are taken for simplifying the process of visiting neighbor vertices of each cell.

## C++

 `// C++ program to get least cost path in a grid from``// top-left to bottom-right``#include ``using` `namespace` `std;` `#define ROW 5``#define COL 5` `// structure for information of each cell``struct` `cell``{``    ``int` `x, y;``    ``int` `distance;``    ``cell(``int` `x, ``int` `y, ``int` `distance) :``        ``x(x), y(y), distance(distance) {}``};` `// Utility method for comparing two cells``bool` `operator<(``const` `cell& a, ``const` `cell& b)``{``    ``if` `(a.distance == b.distance)``    ``{``        ``if` `(a.x != b.x)``            ``return` `(a.x < b.x);``        ``else``            ``return` `(a.y < b.y);``    ``}``    ``return` `(a.distance < b.distance);``}` `// Utility method to check whether a point is``// inside the grid or not``bool` `isInsideGrid(``int` `i, ``int` `j)``{``    ``return` `(i >= 0 && i < ROW && j >= 0 && j < COL);``}` `// Method returns minimum cost to reach bottom``// right from top left``int` `shortest(``int` `grid[ROW][COL], ``int` `row, ``int` `col)``{``    ``int` `dis[row][col];` `    ``// initializing distance array by INT_MAX``    ``for` `(``int` `i = 0; i < row; i++)``        ``for` `(``int` `j = 0; j < col; j++)``            ``dis[i][j] = INT_MAX;` `    ``// direction arrays for simplification of getting``    ``// neighbour``    ``int` `dx[] = {-1, 0, 1, 0};``    ``int` `dy[] = {0, 1, 0, -1};` `    ``set st;` `    ``// insert (0, 0) cell with 0 distance``    ``st.insert(cell(0, 0, 0));` `    ``// initialize distance of (0, 0) with its grid value``    ``dis[0][0] = grid[0][0];` `    ``// loop for standard dijkstra's algorithm``    ``while` `(!st.empty())``    ``{``        ``// get the cell with minimum distance and delete``        ``// it from the set``        ``cell k = *st.begin();``        ``st.erase(st.begin());` `        ``// looping through all neighbours``        ``for` `(``int` `i = 0; i < 4; i++)``        ``{``            ``int` `x = k.x + dx[i];``            ``int` `y = k.y + dy[i];` `            ``// if not inside boundary, ignore them``            ``if` `(!isInsideGrid(x, y))``                ``continue``;` `            ``// If distance from current cell is smaller, then``            ``// update distance of neighbour cell``            ``if` `(dis[x][y] > dis[k.x][k.y] + grid[x][y])``            ``{``                ``// If cell is already there in set, then``                ``// remove its previous entry``                ``if` `(dis[x][y] != INT_MAX)``                    ``st.erase(st.find(cell(x, y, dis[x][y])));` `                ``// update the distance and insert new updated``                ``// cell in set``                ``dis[x][y] = dis[k.x][k.y] + grid[x][y];``                ``st.insert(cell(x, y, dis[x][y]));``            ``}``        ``}``    ``}` `    ``// uncomment below code to print distance``    ``// of each cell from (0, 0)``    ``/*``    ``for (int i = 0; i < row; i++, cout << endl)``        ``for (int j = 0; j < col; j++)``            ``cout << dis[i][j] << " ";``    ``*/``    ``// dis[row - 1][col - 1] will represent final``    ``// distance of bottom right cell from top left cell``    ``return` `dis[row - 1][col - 1];``}` `// Driver code to test above methods``int` `main()``{``    ``int` `grid[ROW][COL] =``    ``{``        ``31, 100, 65, 12, 18,``        ``10, 13, 47, 157, 6,``        ``100, 113, 174, 11, 33,``        ``88, 124, 41, 20, 140,``        ``99, 32, 111, 41, 20``    ``};` `    ``cout << shortest(grid, ROW, COL) << endl;``    ``return` `0;``}`

## Java

 `// Java program to get least cost path``// in a grid from top-left to bottom-right``import` `java.io.*;``import` `java.util.*;` `class` `GFG{``    ` `static` `int``[] dx = { -``1``, ``0``, ``1``, ``0` `};``static` `int``[] dy = { ``0``, ``1``, ``0``, -``1` `};``static` `int` `ROW = ``5``;``static` `int` `COL = ``5``;` `// Custom class for representing``// row-index, column-index &``// distance of each cell``static` `class` `Cell``{``    ``int` `x;``    ``int` `y;``    ``int` `distance;``    ` `    ``Cell(``int` `x, ``int` `y, ``int` `distance)``    ``{``        ``this``.x = x;``        ``this``.y = y;``        ``this``.distance = distance;``    ``}``}` `// Custom comparator for inserting cells``// into Priority Queue``static` `class` `distanceComparator``  ``implements` `Comparator``{``    ``public` `int` `compare(Cell a, Cell b)``    ``{``        ``if` `(a.distance < b.distance)``        ``{``            ``return` `-``1``;``        ``}``        ``else` `if` `(a.distance > b.distance)``        ``{``            ``return` `1``;``        ``}``        ``else` `{``return` `0``;}``    ``}``}` `// Utility method to check whether current``// cell is inside grid or not``static` `boolean` `isInsideGrid(``int` `i, ``int` `j)``{``    ``return` `(i >= ``0` `&& i < ROW &&``            ``j >= ``0` `&& j < COL);``}` `// Method to return shortest path from``// top-corner to bottom-corner in 2D grid``static` `int` `shortestPath(``int``[][] grid, ``int` `row,``                                      ``int` `col)``{``    ``int``[][] dist = ``new` `int``[row][col];``    ` `    ``// Initializing distance array by INT_MAX``    ``for``(``int` `i = ``0``; i < row; i++)``    ``{``        ``for``(``int` `j = ``0``; j < col; j++)``        ``{``            ``dist[i][j] = Integer.MAX_VALUE;``        ``}``    ``}``    ` `    ``// Initialized source distance as``    ``// initial grid position value``    ``dist[``0``][``0``] = grid[``0``][``0``];``    ` `    ``PriorityQueue pq = ``new` `PriorityQueue(``                  ``row * col, ``new` `distanceComparator());``                  ` `    ``// Insert source cell to priority queue``    ``pq.add(``new` `Cell(``0``, ``0``, dist[``0``][``0``]));``    ``while` `(!pq.isEmpty())``    ``{``        ``Cell curr = pq.poll();``        ``for``(``int` `i = ``0``; i < ``4``; i++)``        ``{``            ``int` `rows = curr.x + dx[i];``            ``int` `cols = curr.y + dy[i];``            ` `            ``if` `(isInsideGrid(rows, cols))``            ``{``                ``if` `(dist[rows][cols] >``                    ``dist[curr.x][curr.y] +``                    ``grid[rows][cols])``                ``{``                    ` `                    ``// If Cell is already been reached once,``                    ``// remove it from priority queue``                    ``if` `(dist[rows][cols] != Integer.MAX_VALUE)``                    ``{``                        ``Cell adj = ``new` `Cell(rows, cols,``                                       ``dist[rows][cols]);``                                       ` `                        ``pq.remove(adj);``                    ``}``                    ` `                    ``// Insert cell with updated distance``                    ``dist[rows][cols] = dist[curr.x][curr.y] +``                                       ``grid[rows][cols];``                                       ` `                    ``pq.add(``new` `Cell(rows, cols,``                               ``dist[rows][cols]));``                ``}``            ``}``        ``}``    ``}``    ``return` `dist[row - ``1``][col - ``1``];``}` `// Driver code``public` `static` `void` `main(String[] args)``throws` `IOException``{``    ``int``[][] grid = { { ``31``, ``100``, ``65``, ``12``, ``18` `},``                     ``{ ``10``, ``13``, ``47``, ``157``, ``6` `},``                     ``{ ``100``, ``113``, ``174``, ``11``, ``33` `},``                     ``{ ``88``, ``124``, ``41``, ``20``, ``140` `},``                     ``{ ``99``, ``32``, ``111``, ``41``, ``20` `} };``                     ` `    ``System.out.println(shortestPath(grid, ROW, COL));``}``}` `// This code is contributed by jigyansu`

Output:

`327`

This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.