 Open in App
Not now

# Minimum cost to make Longest Common Subsequence of length k

• Difficulty Level : Hard
• Last Updated : 20 Dec, 2022

Given two string X, Y and an integer k. Now the task is to convert string X with the minimum cost such that the Longest Common Subsequence of X and Y after conversion is of length k. The cost of conversion is calculated as XOR of old character value and new character value. The character value of ‘a’ is 0, ‘b’ is 1, and so on.

Examples:

```Input : X = "abble",
Y = "pie",
k = 2
Output : 25``` `If you changed 'a' to 'z', it will cost 0 XOR 25.`

The problem can be solved by slight change in Dynamic Programming problem of Longest Increasing Subsequence. Instead of two states, we maintain three states.
Note, that if k > min(n, m) then it’s impossible to attain LCS of atleast k length, else it’s always possible.
Let dp[i][j][p] stores the minimum cost to achieve LCS of length p in x[0…i] and y[0….j].
With base step as dp[i][j] = 0 because we can achieve LCS of 0 length without any cost and for i < 0 or j 0 in such case).
Else there are 3 cases:
1. Convert x[i] to y[j].
2. Skip ith character from x.
3. Skip jth character from y.

If we convert x[i] to y[j], then cost = f(x[i]) XOR f(y[j]) will be added and LCS will decrease by 1. f(x) will return the character value of x.
Note that the minimum cost to convert a character ‘a’ to any character ‘c’ is always f(a) XOR f(c) because f(a) XOR f(c) <= (f(a) XOR f(b) + f(b) XOR f(c)) for all a, b, c.
If you skip ith character from x then i will be decreased by 1, no cost will be added and LCS will remain the same.
If you skip jth character from x then j will be decreased by 1, no cost will be added and LCS will remain the same.

Therefore,

```dp[i][j][k] = min(cost + dp[i - 1][j - 1][k - 1],
dp[i - 1][j][k],
dp[i][j - 1][k])
The minimum cost to make the length of their
LCS atleast k is dp[n - 1][m - 1][k]```

## C++

 `#include ``using` `namespace` `std;``const` `int` `N = 30;` `// Return Minimum cost to make LCS of length k``int` `solve(``char` `X[], ``char` `Y[], ``int` `l, ``int` `r,``                     ``int` `k, ``int` `dp[][N][N])``{``    ``// If k is 0.``    ``if` `(!k)``        ``return` `0;` `    ``// If length become less than 0, return``    ``// big number.``    ``if` `(l < 0 | r < 0)``        ``return` `1e9;` `    ``// If state already calculated.``    ``if` `(dp[l][r][k] != -1)``        ``return` `dp[l][r][k];` `    ``// Finding the cost``    ``int` `cost = (X[l] - ``'a'``) ^ (Y[r] - ``'a'``);` `    ``// Finding minimum cost and saving the state value``    ``return` `dp[l][r][k] = min({cost +``                      ``solve(X, Y, l - 1, r - 1, k - 1, dp),``                             ``solve(X, Y, l - 1, r, k, dp),``                             ``solve(X, Y, l, r - 1, k, dp)});``}` `// Driven Program``int` `main()``{``    ``char` `X[] = ``"abble"``;``    ``char` `Y[] = ``"pie"``;``    ``int` `n = ``strlen``(X);``    ``int` `m = ``strlen``(Y);``    ``int` `k = 2;` `    ``int` `dp[N][N][N];``    ``memset``(dp, -1, ``sizeof` `dp);``    ``int` `ans = solve(X, Y, n - 1, m - 1, k, dp);` `    ``cout << (ans == 1e9 ? -1 : ans) << endl;``    ``return` `0;``}`

## Java

 `import` `java.util.*;``import` `java.io.*;` `class` `GFG``{` `    ``static` `int` `N = ``30``;` `    ``// Return Minimum cost to make LCS of length k``    ``static` `int` `solve(``char` `X[], ``char` `Y[], ``int` `l, ``int` `r,``                                    ``int` `k, ``int` `dp[][][])``    ``{``        ``// If k is 0.``        ``if` `(k == ``0``)``        ``{``            ``return` `0``;``        ``}` `        ``// If length become less than 0, return``        ``// big number.``        ``if` `(l < ``0` `| r < ``0``)``        ``{``            ``return` `(``int``) 1e9;``        ``}` `        ``// If state already calculated.``        ``if` `(dp[l][r][k] != -``1``)``        ``{``            ``return` `dp[l][r][k];``        ``}` `        ``// Finding the cost``        ``int` `cost = (X[l] - ``'a'``) ^ (Y[r] - ``'a'``);` `        ``// Finding minimum cost and saving the state value``        ``return` `dp[l][r][k] = Math.min(Math.min(cost +``                ``solve(X, Y, l - ``1``, r - ``1``, k - ``1``, dp),``                ``solve(X, Y, l - ``1``, r, k, dp)),``                ``solve(X, Y, l, r - ``1``, k, dp));``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``char` `X[] = ``"abble"``.toCharArray();``        ``char` `Y[] = ``"pie"``.toCharArray();``        ``int` `n = X.length;``        ``int` `m = Y.length;``        ``int` `k = ``2``;` `        ``int``[][][] dp = ``new` `int``[N][N][N];``        ``for` `(``int` `i = ``0``; i < N; i++)``        ``{``            ``for` `(``int` `j = ``0``; j < N; j++)``            ``{``                ``for` `(``int` `l = ``0``; l < N; l++)``                ``{``                    ``dp[i][j][l] = -``1``;``                ``}``            ``}``        ``}``        ``int` `ans = solve(X, Y, n - ``1``, m - ``1``, k, dp);` `        ``System.out.println(ans == 1e9 ? -``1` `: ans);``    ``}``}` `// This code contributed by Rajput-Ji`

## Python3

 `# Python3 program to calculate Minimum cost``# to make Longest Common Subsequence of length k``N ``=` `30` `# Return Minimum cost to make LCS of length k``def` `solve(X, Y, l, r, k, dp):` `    ``# If k is 0``    ``if` `k ``=``=` `0``:``        ``return` `0` `    ``# If length become less than 0,``    ``# return big number``    ``if` `l < ``0` `or` `r < ``0``:``        ``return` `1000000000` `    ``# If state already calculated``    ``if` `dp[l][r][k] !``=` `-``1``:``        ``return` `dp[l][r][k]` `    ``# Finding cost``    ``cost ``=` `((``ord``(X[l]) ``-` `ord``(``'a'``)) ^``            ``(``ord``(Y[r]) ``-` `ord``(``'a'``)))` `    ``dp[l][r][k] ``=` `min``([cost ``+` `solve(X, Y, l ``-` `1``,``                                          ``r ``-` `1``, k ``-` `1``, dp),``                              ``solve(X, Y, l ``-` `1``, r, k, dp),``                              ``solve(X, Y, l, r ``-` `1``, k, dp)])` `    ``return` `dp[l][r][k]` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:``    ``X ``=` `"abble"``    ``Y ``=` `"pie"``    ``n ``=` `len``(X)``    ``m ``=` `len``(Y)``    ``k ``=` `2``    ``dp ``=` `[[[``-``1``] ``*` `N ``for` `__ ``in` `range``(N)]``                    ``for` `___ ``in` `range``(N)]``    ``ans ``=` `solve(X, Y, n ``-` `1``, m ``-` `1``, k, dp)` `    ``print``(``-``1` `if` `ans ``=``=` `1000000000` `else` `ans)` `# This code is contributed``# by vibhu4agarwal`

## C#

 `// C# program to find subarray with``// sum closest to 0``using` `System;``    ` `class` `GFG``{` `    ``static` `int` `N = 30;` `    ``// Return Minimum cost to make LCS of length k``    ``static` `int` `solve(``char` `[]X, ``char` `[]Y, ``int` `l, ``int` `r,``                                    ``int` `k, ``int` `[,,]dp)``    ``{``        ``// If k is 0.``        ``if` `(k == 0)``        ``{``            ``return` `0;``        ``}` `        ``// If length become less than 0, return``        ``// big number.``        ``if` `(l < 0 | r < 0)``        ``{``            ``return` `(``int``) 1e9;``        ``}` `        ``// If state already calculated.``        ``if` `(dp[l,r,k] != -1)``        ``{``            ``return` `dp[l,r,k];``        ``}` `        ``// Finding the cost``        ``int` `cost = (X[l] - ``'a'``) ^ (Y[r] - ``'a'``);` `        ``// Finding minimum cost and saving the state value``        ``return` `dp[l,r,k] = Math.Min(Math.Min(cost +``                ``solve(X, Y, l - 1, r - 1, k - 1, dp),``                ``solve(X, Y, l - 1, r, k, dp)),``                ``solve(X, Y, l, r - 1, k, dp));``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main(String[] args)``    ``{``        ``char` `[]X = ``"abble"``.ToCharArray();``        ``char` `[]Y = ``"pie"``.ToCharArray();``        ``int` `n = X.Length;``        ``int` `m = Y.Length;``        ``int` `k = 2;` `        ``int``[,,] dp = ``new` `int``[N, N, N];``        ``for` `(``int` `i = 0; i < N; i++)``        ``{``            ``for` `(``int` `j = 0; j < N; j++)``            ``{``                ``for` `(``int` `l = 0; l < N; l++)``                ``{``                    ``dp[i,j,l] = -1;``                ``}``            ``}``        ``}``        ``int` `ans = solve(X, Y, n - 1, m - 1, k, dp);` `        ``Console.WriteLine(ans == 1e9 ? -1 : ans);``    ``}``}` `// This code is contributed by Princi Singh`

## Javascript

 ``

Output

```3
```

Time Complexity: O(n3)
Auxiliary Space: O(n3)

My Personal Notes arrow_drop_up