Minimum concatenation required to get strictly LIS for the given array

Given an array A[] of size n where there are only unique elements in the array. We have to find the minimum concatenation required for sequence A to get strictly Longest Increasing Subsequence. For array A[] we follow 1 based indexing.

Examples:

Input: A = {1, 3, 2} 
Output:
Explanation: 
We can concatenate A two times as [1, 3, 2, 1, 3, 2] and then output for index 1, 3, 5 which gives sub-sequence as 1->2->3.
Input: A = {2, 1, 4, 3, 5} 
Output:
Explanation: 
The given array has to be concatenated 3 times to generate the Longest Increasing Subsequence. 

Approach:
To solve the problem mentioned above the very first observation is that a strictly increasing sub-sequence will always have its length equal to the number of unique elements present in sequence A[]. Hence, we have to figure out a way to keep the maximum consecutive numbers in order are together. We can achieve this by taking as many strictly consecutive numbers in a sequence before opting for concatenation and handle others in the next concatenation.  

Below is the implementation of the above approach:



filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP implementation to Find the minimum
// concatenation required to get strictly
// Longest Increasing Subsequence for the
// given array
#include <bits/stdc++.h>
using namespace std;
 
int increasingSubseq(int a[], int n)
{
    // Ordered map containing pairs
    // of value and index.
    map<int, int> mp;
 
    for (int i = 0; i < n; i++) {
        // Form pairs of value at index i
        // and it's index that is i.
        mp.insert(make_pair(a[i], i));
    }
 
    // Variable to insert the minimum
    // concatenations that are needed
    int ans = 1;
 
    // Iterator pointing to the
    // second pair in the map
    auto itr = ++mp.begin();
 
    // Iterator pointing to the
    // first pair in the map
    for (auto it = mp.begin(); it != mp.end(); ++it) {
 
        // Check if itr tends to end of map
        if (itr != mp.end()) {
 
            // Check if index2 is not greater than index1
            // then we have to perform a concatenation.
            if (itr->second <= it->second)
                ans += 1;
 
            ++itr;
        }
    }
 
    // Return the final answer
    cout << ans << endl;
}
 
// Driver code
int main()
{
    int a[] = { 2, 1, 4, 3, 5 };
 
    int n = sizeof(a) / sizeof(a[0]);
 
    increasingSubseq(a, n);
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

/*package whatever //do not write package name here */
import java.util.*;
import java.io.*;
 
class GFG {
 
    private static void increasingSubseq(int a[], int n)
    {
 
        // Ordered map containing pairs
        // of value and index.
        TreeMap<Integer, Integer> mp
            = new TreeMap<Integer, Integer>();
 
        for (int i = 0; i < n; i++) {
            // Form pairs of value at index i
            // and it's index that is i.
            mp.put(a[i], i);
        }
 
        // Variable to insert the minimum
        // concatenations that are needed
        int ans = 1;
 
        // Iterator pointing to the
        // first entry in the map
        Map.Entry<Integer, Integer> itr
            = mp.pollFirstEntry();
 
        for (Map.Entry<Integer, Integer> it :
             mp.entrySet())
        {
 
            // Check if index2 is not greater than index1
            // then we have to perform a concatenation.
            if (itr.getValue() >= it.getValue())
                ans++;
 
            itr = it;
        }
 
        System.out.println(ans);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int a[] = { 2, 1, 4, 3, 5 };
 
        int n = a.length;
 
        increasingSubseq(a, n);
    }
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation to
# Find the minimum concatenation
# required to get strictly Longest
# Increasing Subsequence for the
# given array
def increasingSubseq(a, n):
   
    # Ordered map containing pairs
    # of value and index.
    mp = {}
 
    for i in range(n):
        # Form pairs of value at
        # index i and it's index
        # that is i.
        mp[a[i]] = i
 
    # Variable to insert the
    # minimum concatenations
    # that are needed
    ans = 1
 
    # Iterator pointing to the
    # second pair in the map
    itr = 1
    li= list(mp.values())
    # Iterator pointing to the
    # first pair in the map
    for key, value in mp.items():
       
        # Check if itr tends to
        # end of map
        if (itr < len(mp)):
           
            # Check if index2 is not
            # greater than index1
            # then we have to perform
            # a concatenation.
            if (li[itr] <= key):
                ans += 1
                 
            itr+=1
 
    # Return the final
    # answer
     
    print(ans)
 
# Driver code
if __name__ == '__main__':
   
    a = [2, 1, 4, 3, 5]
    n = len(a)
    increasingSubseq(a, n)
 
# This code is contributed by bgangwar59
chevron_right

Output
3

Time complexity: O(N * log N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Competitive Programmer | Python Developer

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : bgangwar59, jithin

Article Tags :