Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Minimum Circles needed to be removed so that all remaining circles are non intersecting

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given n Circles present in x-y plane such that all the circles have their center aligned on the x-axis. 
The task is to remove some of them, such that no two circles are intersecting. Find the minimum number of circles that need to be removed. 

Note : Touching circles are also considered to be intersecting. 
Given N and an array of pair of integers. Each pair contains two integers c and r each, denoting the circle with radius r and centre (c, 0).

Examples: 

Input : N=4, arr={(1, 1), (2, 1), (3, 1), (4, 1)} 
Output :
 

Remove 2nd and 3rd circle to make the circles non-intersecting.
Input : N=4, arr={(1, 1), (4, 1), (5, 2), (7, 1)} 
Output : 1
 

Approach: 
Greedy strategy can be applied to solve the problem. 

  • Find starting and ending points of the diameter of the circles.
  • Starting point would be equal to (c-r) and ending point would be equal to (c+r) where (c, 0) is the centre of the particular circle and r is its radius.
  • Sort the {start, end} pair according to the value of end point. Less the value of end point, less is its index.
  • Start iterating the pairs and if the starting point of a circle is less than current end value, it means circles are intersecting hence increment the count. Else update the current end value.

Below is the implementation of the above approach:  

C++




// C++ implementation of the above approach
#include <algorithm>
#include <iostream>
using namespace std;
 
struct circle {
    int start, end;
};
 
// Comparison function modified
// according to the end value
bool comp(circle a, circle b)
{
    if (a.end == b.end)
        return a.start < b.start;
    return a.end < b.end;
}
 
// Function to return the count
// of non intersecting circles
void CountCircles(int c[], int r[], int n)
{
    // structure with start and
    // end of diameter of circles
    circle diameter[n];
 
    for (int i = 0; i < n; ++i) {
        diameter[i].start = c[i] - r[i];
 
        diameter[i].end = c[i] + r[i];
    }
 
    // sorting with smallest finish time first
    sort(diameter, diameter + n, comp);
 
    // count stores number of
    // circles to be removed
    int count = 0;
 
    // cur stores ending of first circle
    int cur = diameter[0].end;
    for (int i = 1; i < n; ++i) {
 
        // non intersecting circles
        if (diameter[i].start > cur) {
            cur = diameter[i].end;
        }
 
        // intersecting circles
        else
            count++;
    }
 
    cout << count << "\n";
}
 
// Driver Code
int main()
{
    // centers of circles
    int c[] = { 1, 2, 3, 4 };
    // radius of circles
    int r[] = { 1, 1, 1, 1 };
 
    // number of circles
    int n = sizeof(c) / sizeof(int);
 
    CountCircles(c, r, n);
 
    return 0;
}

Java




// Java implementation of the above approach
import java.util.Arrays;
import java.util.Comparator;
 
public class MinimumCirclesTobeRemoved {
 
    private class Circle implements Comparator<Circle>{
        int start;
        int end;
         
        // Comparison function modified
        // according to the end value
        public int compare(Circle a , Circle b){
            if(a.end == b.end){
                return (a.start - b.start);
            }
            return a.end - b.end;
        }
    }
     
    // Function to return the count
    // of non intersecting circles
    public void CountCircles(int[] c, int[] r, int n){
     
        // structure with start and
        // end of diameter of circles
        Circle diameter[] = new Circle[n];
 
        for(int i = 0; i < n; i++)
        {
            diameter[i] = new Circle();
            diameter[i].start = (c[i] - r[i]);
            diameter[i].end = (c[i] + r[i]);
        }
         
        // sorting with smallest finish time first
        Arrays.sort(diameter, new Circle());
         
        // count stores number of
        // circles to be removed
        int count = 0;
         
        // cur stores ending of first circle
        int curr = diameter[0].end;
 
        for(int i = 1; i < n; i++)
        {
             
            // non intersecting circles
            if(diameter[i].start > curr)
            {
                curr = diameter[i].end;
            }
            else
            {
                count++;
            }
        }
        System.out.println(count);
    }
     
    // Driver code
    public static void main(String[] args)
    {
        MinimumCirclesTobeRemoved a = new MinimumCirclesTobeRemoved();
         
        // centers of circles
        int[] c = new int[]{1, 2, 3, 4};
         
        // radius of circles
        int[] r = new int[]{1, 1, 1, 1};
        a.CountCircles(c, r, c.length);
    }
}
 
// This code is contributed by parshavnahta97

Python3




# Python3 implementation of the above approach
 
# Function to return the count
# of non intersecting circles
def CountCircles(c, r, n):
     
    # Structure with start and
    # end of diameter of circles
    diameter = []
 
    for i in range(n):
        obj = []
        obj.append(c[i] - r[i])
 
        obj.append(c[i] + r[i])
        diameter.append(obj)
 
    # Sorting with smallest finish time first
    diameter.sort()
 
    # count stores number of
    # circles to be removed
    count = 0
 
    # cur stores ending of first circle
    cur = diameter[0][1]
     
    for i in range(1, n):
         
        # Non intersecting circles
        if (diameter[i][0] > cur):
            cur = diameter[i][1]
             
        # Intersecting circles
        else:
            count += 1
 
    print(count)
 
# Driver Code
 
# Centers of circles
c = [ 1, 2, 3, 4 ]
 
# Radius of circles
r = [ 1, 1, 1, 1 ]
 
# Number of circles
n = len(c)
CountCircles(c, r, n)
 
# This code is contributed by rohitsingh07052

C#




// Include namespace system
using System;
using System.Linq;
 
using System.Collections;
 
public class MinimumCirclesTobeRemoved
{
  private class Circle
  {
    public int start;
    public int end;
  }
 
  // Function to return the count
  // of non intersecting circles
  public void CountCircles(int[] c, int[] r, int n)
  {
 
    // structure with start and
    // end of diameter of circles
    Circle[] diameter = new Circle[n];
    for (int i = 0; i < n; i++)
    {
      diameter[i] = new Circle();
      diameter[i].start = (c[i] - r[i]);
      diameter[i].end = (c[i] + r[i]);
    }
 
    // sorting with smallest finish time first
    Array.Sort(diameter,(a,b)=>a.end==b.end ? a.start - b.start : a.end - b.end);
 
    // count stores number of
    // circles to be removed
    var count = 0;
 
    // cur stores ending of first circle
    var curr = diameter[0].end;
    for (int i = 1; i < n; i++)
    {
 
      // non intersecting circles
      if (diameter[i].start > curr)
      {
        curr = diameter[i].end;
      }
      else
      {
        count++;
      }
    }
    Console.WriteLine(count);
  }
 
  // Driver code
  public static void Main(String[] args)
  {
    var a = new MinimumCirclesTobeRemoved();
 
    // centers of circles
    int[] c = new int[]{1, 2, 3, 4};
 
    // radius of circles
    int[] r = new int[]{1, 1, 1, 1};
    a.CountCircles(c, r, c.Length);
  }
}
 
// This code is contributed by aadityaburujwale.

Javascript




// JavaScript implementation of the above approach
 
// Function to return the count
// of non intersecting circles
function CountCircles(c, r)
{
 
    // structure with start and
    // end of diameter of circles
    let diameter = [];
    for (let i = 0; i < c.length; ++i) {
        diameter[i] = {start: c[i] - r[i], end: c[i] + r[i]};
    }
 
    // sorting with smallest finish time first
    diameter.sort(function(a, b) {
        if (a.end == b.end)
            return a.start < b.start;
        return a.end < b.end;
    });
 
    // count stores number of
    // circles to be removed
    let count = 0;
 
    // cur stores ending of first circle
    let cur = diameter[0].end;
    for (let i = 1; i < diameter.length; ++i) {
 
        // non intersecting circles
        if (diameter[i].start > cur) {
            cur = diameter[i].end;
        }
 
        // intersecting circles
        else
            count++;
    }
 
    console.log(count);
}
 
// Driver Code
 
// centers of circles
let c = [1, 2, 3, 4];
// radius of circles
let r = [1, 1, 1, 1];
 
// number of circles
let n = c.length;
 
CountCircles(c, r);
 
// This code is contributed by akashish__

Output: 

2

 

Time Complexity: O(N*log(N)) 
where N is the number of circles.

Space Complexity: O(N)
 


My Personal Notes arrow_drop_up
Last Updated : 08 May, 2023
Like Article
Save Article
Similar Reads
Related Tutorials