Skip to content
Related Articles

Related Articles

Improve Article

Minimum and Maximum prime numbers in an array

  • Difficulty Level : Basic
  • Last Updated : 21 May, 2021

Given an array arr[] of N positive integers. The task is to find the minimum and maximum prime elements in the given array. 
Examples: 
 

Input: arr[] = 1, 3, 4, 5, 7
Output: Minimum : 3
        Maximum : 7

Input: arr[] = 1, 2, 3, 4, 5, 6, 7, 11
Output: Minimum : 2
        Maximum : 11

 

Naive Approach: 
Take a variable min and max. Initialize min with INT_MAX and max with INT_MIN.Traverse the array and keep checking for every element if it is prime or not and update the minimum and maximum prime element at the same time. 
Efficient Approach: 
Generate all primes upto maximum element of the array using sieve of Eratosthenes and store them in a hash. Now traverse the array and find the minimum and maximum element which are prime using the hash table.
Below is the implementation of above approach: 
 

C++




// CPP program to find minimum and maximum
// prime number in given array.
#include <bits/stdc++.h>
using namespace std;
 
// Function to find count of prime
void prime(int arr[], int n)
{
    // Find maximum value in the array
    int max_val = *max_element(arr, arr + n);
 
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    vector<bool> prime(max_val + 1, true);
 
    // Remaining part of SIEVE
    prime[0] = false;
    prime[1] = false;
    for (int p = 2; p * p <= max_val; p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
 
    // Minimum and Maximum prime number
    int minimum = INT_MAX;
    int maximum = INT_MIN;
    for (int i = 0; i < n; i++)
        if (prime[arr[i]]) {
            minimum = min(minimum, arr[i]);
            maximum = max(maximum, arr[i]);
        }
 
    cout << "Minimum : " << minimum << endl;
    cout << "Maximum : " << maximum << endl;
}
 
// Driver code
int main()
{
 
    int arr[] = { 1, 2, 3, 4, 5, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    prime(arr, n);
 
    return 0;
}

Java




// Java program to find minimum and maximum
// prime number in given array.
import java.util.*;
 
class GFG {
 
// Function to find count of prime
static void prime(int arr[], int n)
{
    // Find maximum value in the array
    int max_val = Arrays.stream(arr).max().getAsInt();
 
         
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    Vector<Boolean> prime = new Vector<Boolean>();
        for(int i= 0;i<max_val+1;i++)
            prime.add(Boolean.TRUE);
         
    // Remaining part of SIEVE
    prime.add(0, Boolean.FALSE);
    prime.add(1, Boolean.FALSE);
    for (int p = 2; p * p <= max_val; p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime.get(p) == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime.add(i, Boolean.FALSE);
        }
    }
 
    // Minimum and Maximum prime number
    int minimum = Integer.MAX_VALUE;
    int maximum = Integer.MIN_VALUE;
    for (int i = 0; i < n; i++)
        if (prime.get(arr[i])) {
            minimum = Math.min(minimum, arr[i]);
            maximum = Math.max(maximum, arr[i]);
        }
 
    System.out.println("Minimum : " + minimum) ;
    System.out.println("Maximum : " + maximum );
}
 
// Driver code
    public static void main(String[] args) {
        int arr[] = { 1, 2, 3, 4, 5, 6, 7 };
    int n = arr.length;
 
    prime(arr, n);
    }
}
/*This code is contributed by 29AjayKumar*/

Python3




# Python3 program to find minimum and
# maximum prime number in given array.
import math as mt
 
# Function to find count of prime
def Prime(arr, n):
 
    # Find maximum value in the array
    max_val = max(arr)
 
    # USE SIEVE TO FIND ALL PRIME NUMBERS
    # LESS THAN OR EQUAL TO max_val
    # Create a boolean array "prime[0..n]".
    # A value in prime[i] will finally be
    # false if i is Not a prime, else true.
    prime = [True for i in range(max_val + 1)]
 
    # Remaining part of SIEVE
    prime[0] = False
    prime[1] = False
    for p in range(2, mt.ceil(mt.sqrt(max_val))):
 
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p] == True):
 
            # Update all multiples of p
            for i in range(2 * p, max_val + 1, p):
                    prime[i] = False
         
    # Minimum and Maximum prime number
    minimum = 10**9
    maximum = -10**9
    for i in range(n):
        if (prime[arr[i]] == True):
            minimum = min(minimum, arr[i])
            maximum = max(maximum, arr[i])
         
    print("Minimum : ", minimum )
    print("Maximum : ", maximum )
 
# Driver code
arr = [1, 2, 3, 4, 5, 6, 7]
n = len(arr)
 
Prime(arr, n)
 
# This code is contributed by
# Mohit kumar 29

C#




// A C# program to find minimum and maximum
// prime number in given array.
using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG
{
 
// Function to find count of prime
static void prime(int []arr, int n)
{
    // Find maximum value in the array
    int max_val = arr.Max();
 
         
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    List<bool>prime = new List<bool>();
        for(int i = 0; i < max_val + 1;i++)
            prime.Add(true);
         
    // Remaining part of SIEVE
    prime.Insert(0, false);
    prime.Insert(1, false);
    for (int p = 2; p * p <= max_val; p++)
    {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true)
        {
 
            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime.Insert(i, false);
        }
    }
 
    // Minimum and Maximum prime number
    int minimum = int.MaxValue;
    int maximum = int.MinValue;
    for (int i = 0; i < n; i++)
        if (prime[arr[i]])
        {
            minimum = Math.Min(minimum, arr[i]);
            maximum = Math.Max(maximum, arr[i]);
        }
 
    Console.WriteLine("Minimum : " + minimum) ;
    Console.WriteLine("Maximum : " + maximum );
}
 
    // Driver code
    public static void Main()
    {
        int []arr = { 1, 2, 3, 4, 5, 6, 7 };
        int n = arr.Length;
 
        prime(arr, n);
    }
}
 
/* This code contributed by PrinciRaj1992 */

Javascript




<script>
// Javascript program to find minimum and maximum
// prime number in given array.
 
// Function to find count of prime
function prime(arr, n)
{
    // Find maximum value in the array
    let max_val = arr.sort((b, a) => a - b)[0];
 
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    let prime = new Array(max_val + 1).fill(true);
 
    // Remaining part of SIEVE
    prime[0] = false;
    prime[1] = false;
    for (let p = 2; p * p <= max_val; p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (let i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
 
    // Minimum and Maximum prime number
    let minimum = Number.MAX_SAFE_INTEGER;
    let maximum = Number.MIN_SAFE_INTEGER;
    for (let i = 0; i < n; i++)
        if (prime[arr[i]]) {
            minimum = Math.min(minimum, arr[i]);
            maximum = Math.max(maximum, arr[i]);
        }
 
    document.write("Minimum : " + minimum + "<br>");
    document.write("Maximum : " + maximum + "<br>");
}
 
// Driver code
 
let arr = [1, 2, 3, 4, 5, 6, 7];
let n = arr.length;
 
prime(arr, n);
 
// This code is contributed by Saurabh Jaiswal
</script>
Output: 
Minimum : 2
Maximum : 7

 

Time complexity : O(n*log(log(n)))
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :