Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Minimum and maximum possible length of the third side of a triangle

  • Last Updated : 25 Mar, 2021

Given two sides of a triangle s1 and s2, the task is to find the minimum and maximum possible length of the third side of the given triangle. Print -1 if it is not possible to make a triangle with the given side lengths. Note that the length of all the sides must be integers.
Examples: 
 

Input: s1 = 3, s2 = 6 
Output: 
Max = 8 
Min = 4
Input: s1 = 5, s2 = 8 
Output: 
Max = 12 
Min = 4 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 



Approach: Let s1, s2 and s3 be the sides of the given triangle where s1 and s2 are given. As we know that in a triangle, the sum of two sides must always be greater than the third side. So, the following equations must be satisfied: 
 

  1. s1 + s2 > s3
  2. s1 + s3 > s2
  3. s2 + s3 > s1

Solving for s3, we get s3 < s1 + s2, s3 > s2 – s1 and s3 > s1 – s2
It is clear now that the length of the third side must lie in the range (max(s1, s2) – min(s1, s2), s1 + s2) 
So, the minimum possible value will be max(s1, s2) – min(s1, s2) + 1 and the maximum possible value will be s1 + s2 – 1.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to find the minimum and the
// maximum possible length of the third
// side of the given triangle
void find_length(int s1, int s2)
{
 
    // Not a valid triangle
    if (s1 <= 0 || s2 <= 0) {
        cout << -1;
        return;
    }
    int max_length = s1 + s2 - 1;
    int min_length = max(s1, s2) - min(s1, s2) + 1;
 
    // Not a valid triangle
    if (min_length > max_length) {
        cout << -1;
        return;
    }
 
    cout << "Max = " << max_length << endl;
    cout << "Min = " << min_length;
}
 
// Driver code
int main()
{
    int s1 = 8, s2 = 5;
    find_length(s1, s2);
 
    return 0;
}

Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
 
// Function to find the minimum and the
// maximum possible length of the third
// side of the given triangle
static void find_length(int s1, int s2)
{
 
    // Not a valid triangle
    if (s1 <= 0 || s2 <= 0)
    {
        System.out.print(-1);
        return;
    }
    int max_length = s1 + s2 - 1;
    int min_length = Math.max(s1, s2) - Math.min(s1, s2) + 1;
 
    // Not a valid triangle
    if (min_length > max_length)
    {
        System.out.print(-1);
        return;
    }
 
    System.out.println("Max = " + max_length);
    System.out.print("Min = " + min_length);
}
 
// Driver code
public static void main (String[] args)
{
    int s1 = 8, s2 = 5;
    find_length(s1, s2);
}
}
 
// This code is contributed by anuj_67..

Python3




# Python3 implementation of the approach
 
# Function to find the minimum and the
# maximum possible length of the third
# side of the given triangle
def find_length(s1, s2) :
 
    # Not a valid triangle
    if (s1 <= 0 or s2 <= 0) :
        print(-1, end = "");
        return;
         
    max_length = s1 + s2 - 1;
    min_length = max(s1, s2) - min(s1, s2) + 1;
 
    # Not a valid triangle
    if (min_length > max_length) :
        print(-1, end = "");
        return;
 
    print("Max =", max_length);
    print("Min =", min_length);
 
 
# Driver code
if __name__ == "__main__" :
 
    s1 = 8;
    s2 = 5;
     
    find_length(s1, s2);
     
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to find the minimum and the
// maximum possible length of the third
// side of the given triangle
static void find_length(int s1, int s2)
{
 
    // Not a valid triangle
    if (s1 <= 0 || s2 <= 0)
    {
        Console.Write(-1);
        return;
    }
    int max_length = s1 + s2 - 1;
    int min_length = Math.Max(s1, s2) - Math.Min(s1, s2) + 1;
 
    // Not a valid triangle
    if (min_length > max_length)
    {
        Console.WriteLine(-1);
        return;
    }
 
    Console.WriteLine("Max = " + max_length);
    Console.WriteLine("Min = " + min_length);
}
 
// Driver code
public static void Main ()
{
    int s1 = 8, s2 = 5;
    find_length(s1, s2);
}
}
 
// This code is contributed by anuj_67..

Javascript




<script>
// javascript implementation of the approach
 
    // Function to find the minimum and the
    // maximum possible length of the third
    // side of the given triangle
    function find_length(s1 , s2)
    {
 
        // Not a valid triangle
        if (s1 <= 0 || s2 <= 0)
        {
            document.write(-1);
            return;
        }
        var max_length = s1 + s2 - 1;
        var min_length = Math.max(s1, s2) - Math.min(s1, s2) + 1;
 
        // Not a valid triangle
        if (min_length > max_length)
        {
            document.write(-1);
            return;
        }
 
        document.write("Max = " + max_length+"<br/>");
        document.write("Min = " + min_length);
    }
 
    // Driver code
    var s1 = 8, s2 = 5;
    find_length(s1, s2);
 
// This code is contributed by todaysgaurav
</script>
Output: 
Max = 12
Min = 4

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :