# Minimum addition/removal of characters to be done to make frequency of each character prime

• Last Updated : 23 Dec, 2021

Given a string S of length N, the task is to find the minimum operations required to make the frequency of every distinct character prime. The frequency of a character can be increased or decreased by 1 in a single operation.

Examples:

Input: S = “abba”
Output:
Explanation: There are two characters in the string S and the frequency of ‘a’ is 2 which is prime. The frequency of ‘b’ is 2 which is also a prime number.Hence no operations are required for this case.

Input: S = “aaaaaaaaa”
Output:
Explanation: The frequency of ‘a’ in the string is 9. Either remove 2 a’s from the string or add 2 a’s in the string to make the frequency of ‘a’ prime. Thus, the minimum number of operations needed is 2.

Naive Approach:
Find the frequency of each character in the string. Let the frequency be X. Find the prime number greater than X and less than X. Compare the difference between X and the two prime numbers found and choose the closest prime number. Add the difference between the closest prime number and X to the number of operations. Thus, the minimum number of operations will be obtained. It is an inefficient approach as the lower and upper bounds to find the prime number are not known.

Efficient Approach:

1. Use the sieve algorithm to find all the prime numbers up to N and store them in an array.
2. Find out the nearest lower prime number for all the numbers from i = 1 to N and store the difference between i and its nearest lower prime number in an array, say arr1[].
3. Find out the nearest higher prime number for all the numbers from i = 1 to N and store the difference between i and its nearest higher prime number in an array, say arr2[].
4. Traverse the string and find the frequency of all the distinct characters in the string and use an unordered_map to save the frequencies of these distinct characters.
5. Let the frequency of any distinct character be X, then find out the distance between X and the nearest prime number from the arrays arr1[] and arr2[].
6. Choose the distance which is less between the two and add this distance to the number of operations.
7. Do this for all the distinct characters and print the number of operations finally.

Below is the implementation of the above approach:

## C++

 `// C++ code for the above approach` `#include ``#include ``#include ``using` `namespace` `std;` `// using the sieve to find``// the prime factors.``void` `spf_array(``int` `spf[], ``int` `d)``{``    ``spf = 1;``    ``int` `i = 0;` `    ``// setting every number``    ``// as prime number initially``    ``for` `(i = 2; i <= d; i++) {``        ``spf[i] = i;``    ``}` `    ``// removing the even numbers as``    ``// they cannot be prime except 2``    ``for` `(i = 2; i <= d; i = i + 2) {``        ``spf[i] = 2;``    ``}` `    ``for` `(i = 3; i * i <= d; i++) {``        ``// if they are prime``        ``if` `(spf[i] == i) {``            ``int` `j;` `            ``// iterating the loop for``            ``// prime and eliminate all``            ``// the multiples of three``            ``for` `(j = i * i; j <= d; j = j + i) {``                ``if` `(spf[j] == j) {``                    ``spf[j] = i;``                ``}``            ``}``        ``}``    ``}``}` `// function to find the closest``// prime number of every``// number upto N (size of the string)``void` `closest_prime_spf(``int` `spf[],``                       ``int` `cspf[], ``int` `d)``{``    ``// for the base case``    ``cspf = 1;` `    ``int` `i = 0, j = 0, k = 0;` `    ``// iterating to find the``    ``// distance from the``    ``// lesser nearest prime``    ``for` `(i = 2; i < d; i++) {``        ``if` `(spf[i] != i) {``            ``cspf[i] = ``abs``(i - k);``        ``}``        ``else` `{``            ``cspf[i] = -1;``            ``k = i;``        ``}``    ``}` `    ``// iterating to find the``    ``// distance from the``    ``// lesser nearest prime``    ``for` `(i = d - 1; i >= 2; i--) {``        ``if` `(spf[i] != i) {``            ``if` `(cspf[i] > ``abs``(k - i)) {``                ``cspf[i] = ``abs``(k - i);``            ``}``        ``}``        ``else` `{``            ``k = i;``        ``}``    ``}``}` `// function to find the``// minimum operation``int` `minimum_operation(``int` `cspf[],``                      ``string s)``{` `    ``// created map to find the``    ``// frequency of distinct characters``    ``unordered_map<``char``, ``int``> m;` `    ``// variable to iterate and``    ``// holding the minimum operation``    ``int` `i = 0, k = 0;` `    ``// loop for calculation frequency``    ``for` `(i = 0; i < s.length(); i++) {``        ``m[s[i]] = m[s[i]] + 1;``    ``}` `    ``// iterate over frequency``    ``// if we not get a character``    ``// frequency prime``    ``// then we find the closest``    ``// prime and add``    ``for` `(``auto` `x : m) {``        ``int` `h = x.second;``        ``if` `(cspf[h] != -1) {``            ``k = k + cspf[h];``        ``}``    ``}``    ``return` `k;``}` `// Function to find the``// minimum number of operations``void` `minOper(string s)``{` `    ``int` `spf[s.length() + 1];``    ``int` `cspf[s.length() + 1];` `    ``// function called to create``    ``// the spf``    ``spf_array(spf, s.length() + 1);` `    ``// function called to``    ``// create the cspf``    ``closest_prime_spf(spf, cspf,``                      ``s.length() + 1);` `    ``cout << minimum_operation(cspf, s)``         ``<< endl;``}` `// Driver Code``int` `main()``{``    ``// input string``    ``string s = ``"aaaaaaaaabbcccccc"``;` `    ``minOper(s);` `    ``return` `0;``}`

## Java

 `// Java code for the above approach``import` `java.util.*;` `class` `GFG{` `// Using the sieve to find``// the prime factors.``static` `void` `spf_array(``int` `spf[], ``int` `d)``{``    ``spf[``1``] = ``1``;``    ``int` `i = ``0``;` `    ``// Setting every number``    ``// as prime number initially``    ``for``(i = ``2``; i < d; i++)``    ``{``        ``spf[i] = i;``    ``}` `    ``// Removing the even numbers as``    ``// they cannot be prime except 2``    ``for``(i = ``2``; i < d; i = i + ``2``)``    ``{``        ``spf[i] = ``2``;``    ``}` `    ``for``(i = ``3``; i * i <= d; i++)``    ``{``        ` `        ``// If they are prime``        ``if` `(spf[i] == i)``        ``{``            ``int` `j;` `            ``// Iterating the loop for``            ``// prime and eliminate all``            ``// the multiples of three``            ``for``(j = i * i; j < d; j = j + i)``            ``{``                ``if` `(spf[j] == j)``                ``{``                    ``spf[j] = i;``                ``}``            ``}``        ``}``    ``}``}` `// Function to find the closest``// prime number of every``// number upto N (size of the String)``static` `void` `closest_prime_spf(``int` `spf[],``                              ``int` `cspf[],``                              ``int` `d)``{``    ` `    ``// For the base case``    ``cspf[``1``] = ``1``;` `    ``int` `i = ``0``, k = ``0``;` `    ``// Iterating to find the``    ``// distance from the``    ``// lesser nearest prime``    ``for``(i = ``2``; i < d; i++)``    ``{``        ``if` `(spf[i] != i)``        ``{``            ``cspf[i] = Math.abs(i - k);``        ``}``        ``else``        ``{``            ``cspf[i] = -``1``;``            ``k = i;``        ``}``    ``}` `    ``// Iterating to find the``    ``// distance from the``    ``// lesser nearest prime``    ``for``(i = d - ``1``; i >= ``2``; i--)``    ``{``        ``if` `(spf[i] != i)``        ``{``            ``if` `(cspf[i] > Math.abs(k - i))``            ``{``                ``cspf[i] = Math.abs(k - i);``            ``}``        ``}``        ``else``        ``{``            ``k = i;``        ``}``    ``}``}` `// Function to find the``// minimum operation``static` `int` `minimum_operation(``int` `cspf[],``                             ``String s)``{``    ` `    ``// Created map to find the``    ``// frequency of distinct characters``    ``HashMap m = ``new` `HashMap<>();` `    ``// Variable to iterate and``    ``// holding the minimum operation``    ``int` `i = ``0``, k = ``0``;` `    ``// Loop for calculation frequency``    ``for``(i = ``0``; i < s.length(); i++)``    ``{``        ``if` `(m.containsKey(s.charAt(i)))``            ``m.put(s.charAt(i),``            ``m.get(s.charAt(i)) + ``1``);``        ``else``            ``m.put(s.charAt(i), ``1``);``    ``}` `    ``// Iterate over frequency``    ``// if we not get a character``    ``// frequency prime then we``    ``// find the closest``    ``// prime and add``    ``for``(Map.Entry x : m.entrySet())``    ``{``        ``int` `h = x.getValue();``        ``if` `(cspf[h] != -``1``)``        ``{``            ``k = k + cspf[h];``        ``}``    ``}``    ``return` `k;``}` `// Function to find the``// minimum number of operations``static` `void` `minOper(String s)``{``    ``int` `[]spf = ``new` `int``[s.length() + ``1``];``    ``int` `[]cspf = ``new` `int``[s.length() + ``1``];` `    ``// Function called to create``    ``// the spf``    ``spf_array(spf, s.length() + ``1``);` `    ``// Function called to``    ``// create the cspf``    ``closest_prime_spf(spf, cspf,``                      ``s.length() + ``1``);` `    ``System.out.print(minimum_operation(cspf, s) + ``"\n"``);``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ` `    ``// Input String``    ``String s = ``"aaaaaaaaabbcccccc"``;` `    ``minOper(s);``}``}` `// This code is contributed by Amit Katiyar`

## Python3

 `# Python3 code for the above approach``from` `collections ``import` `defaultdict` `# Using the sieve to find``# the prime factors.``def` `spf_array(spf, d):` `    ``spf[``1``] ``=` `1``    ``i ``=` `0``    ` `    ``# Setting every number as prime``    ``# number initially and remove``    ``# even numbers as 2 as they``    ``# cannot be prime except 2``    ``for` `i ``in` `range``(``2``, d ``+` `1``):``        ``if` `(i ``%` `2` `=``=` `0``):``          ``spf[i] ``=` `2``        ``else``:``          ``spf[i] ``=` `i``   ` `    ``i ``=` `3``    ``while` `i ``*` `i <``=` `d:``        ` `        ``# If they are prime``        ``if` `(spf[i] ``=``=` `i):``        ` `            ``# Iterating the loop for``            ``# prime and eliminate all``            ``# the multiples of three``            ``j ``=` `i ``*` `i``            ``while` `j < d ``+` `1``:``                ``if` `(spf[j] ``=``=` `j):``                    ``spf[j] ``=` `i``                    ` `                ``j ``=` `j ``+` `i``                ` `        ``i ``+``=` `1``              ` `# Function to find the closest``# prime number of every number``# upto N (size of the string)``def` `closest_prime_spf(spf, cspf, d):``    ` `    ``# For the base case``    ``cspf[``1``] ``=` `1``    ` `    ``i ``=` `0``    ``j ``=` `0``    ``k ``=` `0``    ` `    ``# Iterating to find the``    ``# distance from the``    ``# lesser nearest prime``    ``for` `i ``in` `range``(``2``, d):``        ``if` `(spf[i] !``=` `i):``            ``cspf[i] ``=` `abs``(i ``-` `k)``        ``else``:``            ``cspf[i] ``=` `-``1``            ``k ``=` `i``    ` `    ``# Iterating to find the``    ``# distance from the``    ``# lesser nearest prime``    ``for` `i ``in` `range``(d ``-` `1``, ``1``, ``-``1``):``        ``if` `(spf[i] !``=` `i):``            ``if` `(cspf[i] > ``abs``(k ``-` `i)):``                ``cspf[i] ``=` `abs``(k ``-` `i)``        ``else``:``            ``k ``=` `i``          ` `# Function to find the``# minimum operation``def` `minimum_operation(cspf, s):` `    ``# Created map to find the``    ``# frequency of distinct characters``    ``m ``=` `defaultdict(``int``)` `    ``# Variable to iterate and``    ``# holding the minimum operation``    ``i ``=` `0``    ``k ``=` `0` `    ``# Loop for calculation frequency``    ``for` `i ``in` `range``(``len``(s)):``        ``m[s[i]] ``=` `m[s[i]] ``+` `1``      ` `    ``# Iterate over frequency if we``    ``# not get a character frequency``    ``# prime then we find the closest``    ``# prime and add``    ``#print (cspf)``    ``for` `x ``in` `m.values():``        ``h ``=` `x``        ` `        ``if` `(cspf[h] !``=` `-``1``):``            ``k ``=` `k ``+` `cspf[h]``  ` `    ``return` `k` `# Function to find the``# minimum number of operations``def` `minOper(s):``          ` `    ``spf ``=` `[``0``] ``*` `(``len``(s) ``+` `2``)``    ``cspf ``=` `[``0``] ``*` `(``len``(s) ``+` `2``)` `    ``# Function called to create``    ``# the spf``    ``spf_array(spf, ``len``(s) ``+` `1``)` `    ``# Function called to``    ``# create the cspf``    ``closest_prime_spf(spf, cspf,``                      ``len``(s) ``+` `1``)` `    ``print``(minimum_operation(cspf, s))``      ` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:``    ` `    ``# Input string``    ``s ``=` `"aaaaaaaaabbcccccc"` `    ``minOper(s)` `# This code is contributed by chitranayal`

## C#

 `// C# code for the``// above approach``using` `System;``using` `System.Collections.Generic;``class` `GFG{` `// Using the sieve to find``// the prime factors.``static` `void` `spf_array(``int` `[]spf,``                      ``int` `d)``{``  ``spf = 1;``  ``int` `i = 0;` `  ``// Setting every number``  ``// as prime number initially``  ``for``(i = 2; i < d; i++)``  ``{``    ``spf[i] = i;``  ``}` `  ``// Removing the even numbers as``  ``// they cannot be prime except 2``  ``for``(i = 2; i < d; i = i + 2)``  ``{``    ``spf[i] = 2;``  ``}` `  ``for``(i = 3; i * i <= d; i++)``  ``{``    ``// If they are prime``    ``if` `(spf[i] == i)``    ``{``      ``int` `j;` `      ``// Iterating the loop for``      ``// prime and eliminate all``      ``// the multiples of three``      ``for``(j = i * i; j < d; j = j + i)``      ``{``        ``if` `(spf[j] == j)``        ``{``          ``spf[j] = i;``        ``}``      ``}``    ``}``  ``}``}` `// Function to find the closest``// prime number of every``// number upto N (size of the String)``static` `void` `closest_prime_spf(``int` `[]spf,``                              ``int` `[]cspf,``                              ``int` `d)``{   ``  ``// For the base case``  ``cspf = 1;` `  ``int` `i = 0, k = 0;` `  ``// Iterating to find the``  ``// distance from the``  ``// lesser nearest prime``  ``for``(i = 2; i < d; i++)``  ``{``    ``if` `(spf[i] != i)``    ``{``      ``cspf[i] = Math.Abs(i - k);``    ``}``    ``else``    ``{``      ``cspf[i] = -1;``      ``k = i;``    ``}``  ``}` `  ``// Iterating to find the``  ``// distance from the``  ``// lesser nearest prime``  ``for``(i = d - 1; i >= 2; i--)``  ``{``    ``if` `(spf[i] != i)``    ``{``      ``if` `(cspf[i] > Math.Abs(k - i))``      ``{``        ``cspf[i] = Math.Abs(k - i);``      ``}``    ``}``    ``else``    ``{``      ``k = i;``    ``}``  ``}``}` `// Function to find the``// minimum operation``static` `int` `minimum_operation(``int` `[]cspf,``                             ``String s)``{` `  ``// Created map to find the``  ``// frequency of distinct characters``  ``Dictionary<``char``,``             ``int``> m = ``new` `Dictionary<``char``,``                                     ``int``>();``  ` `  ``// Variable to iterate and``  ``// holding the minimum operation``  ``int` `i = 0, k = 0;` `  ``// Loop for calculation``  ``// frequency``  ``for``(i = 0; i < s.Length; i++)``  ``{``    ``if` `(m.ContainsKey(s[i]))``      ``m[s[i]] = m[s[i]] + 1;``    ``else``      ``m.Add(s[i], 1);``  ``}` `  ``// Iterate over frequency``  ``// if we not get a character``  ``// frequency prime then we``  ``// find the closest``  ``// prime and add``  ``foreach``(KeyValuePair<``char``,``                       ``int``> x ``in` `m)``  ``{``    ``int` `h = x.Value;``    ``if` `(cspf[h] != -1)``    ``{``      ``k = k + cspf[h];``    ``}``  ``}``  ``return` `k;``}` `// Function to find the``// minimum number of operations``static` `void` `minOper(String s)``{``  ``int` `[]spf = ``new` `int``[s.Length + 1];``  ``int` `[]cspf = ``new` `int``[s.Length + 1];` `  ``// Function called to create``  ``// the spf``  ``spf_array(spf, s.Length + 1);` `  ``// Function called to``  ``// create the cspf``  ``closest_prime_spf(spf, cspf,``                    ``s.Length + 1);` `  ``Console.Write(minimum_operation(``                ``cspf, s) + ``"\n"``);``}` `// Driver Code``public` `static` `void` `Main(String[] args)``{``  ``// Input String``  ``String s = ``"aaaaaaaaabbcccccc"``;` `  ``minOper(s);``}``}` `// This code is contributed by shikhasingrajput`

## Javascript

 ``

Output:

`3`

Time complexity: O(N * log(log(N)))
Auxiliary Space complexity: O(N)

My Personal Notes arrow_drop_up