Given a circular array arr[] of length N, the task is to find the minimum absolute difference between any adjacent pair. If there are many optimum solutions, output any of them.
Examples:
Input: arr[] = {10, 12, 13, 15, 10}
Output: 0
Explanation: |10 – 10| = 0 is the minimum possible difference.
Input: arr[] = {10, 20, 30, 40}
Output: 10
Explanation: |10 – 20| = 10 is the minimum, 20 30 or 30 40 could be the answer too.
Approach: Below is the idea to solve the problem
Traverse from second element to last an check the difference of every adjacent pair and store the minimum value. The edge case is to check difference between last element and first element.
Follow the steps below to implement the idea:
- Create a variable res to store the minimum difference between any adjacent pair.
- Run a for loop of i from 1 to N-1 and for each iteration.
- Calculate the absolute difference of Arr[i] and Arr[i-1].
- Update the value of res if the value of | Arr[i] – Arr[i-1] | is smaller than res.
- Return res as the required answer.
Below is the implementation of the above approach.
C++
#include <bits/stdc++.h>
using namespace std;
void minAdjDifference( int arr[], int n)
{
if (n < 2)
return ;
int res = abs (arr[1] - arr[0]);
for ( int i = 2; i < n; i++)
res = min(res, abs (arr[i] - arr[i - 1]));
res = min(res, abs (arr[n - 1] - arr[0]));
cout << "Min Difference = " << res;
}
int main()
{
int a[] = { 10, 12, 13, 15, 10 };
int n = sizeof (a) / sizeof (a[0]);
minAdjDifference(a, n);
return 0;
}
|
Java
class GFG {
static void minAdjDifference( int arr[], int n)
{
if (n < 2 )
return ;
int res = Math.abs(arr[ 1 ] - arr[ 0 ]);
for ( int i = 2 ; i < n; i++)
res = Math.min(res, Math.abs(arr[i] - arr[i - 1 ]));
res = Math.min(res, Math.abs(arr[n - 1 ] - arr[ 0 ]));
System.out.print( "Min Difference = " + res);
}
public static void main(String arg[])
{
int a[] = { 10 , 12 , 13 , 15 , 10 };
int n = a.length;
minAdjDifference(a, n);
}
}
|
Python3
def minAdjDifference(arr, n):
if (n < 2 ): return
res = abs (arr[ 1 ] - arr[ 0 ])
for i in range ( 2 , n):
res = min (res, abs (arr[i] - arr[i - 1 ]))
res = min (res, abs (arr[n - 1 ] - arr[ 0 ]))
print ( "Min Difference = " , res)
a = [ 10 , 12 , 13 , 15 , 10 ]
n = len (a)
minAdjDifference(a, n)
|
C#
using System;
class GFG {
static void minAdjDifference( int [] arr, int n)
{
if (n < 2)
return ;
int res = Math.Abs(arr[1] - arr[0]);
for ( int i = 2; i < n; i++)
res = Math.Min(res, Math.Abs(arr[i] - arr[i - 1]));
res = Math.Min(res, Math.Abs(arr[n - 1] - arr[0]));
Console.Write( "Min Difference = " + res);
}
public static void Main()
{
int [] a = { 10, 12, 13, 15, 10 };
int n = a.Length;
minAdjDifference(a, n);
}
}
|
PHP
<?php
function minAdjDifference( $arr , $n )
{
if ( $n < 2)
return ;
$res = abs ( $arr [1] - $arr [0]);
for ( $i = 2; $i < $n ; $i ++)
$res = min( $res ,
abs ( $arr [ $i ] -
$arr [ $i - 1]));
$res = min( $res , abs ( $arr [ $n - 1] -
$arr [0]));
echo "Min Difference = " , $res ;
}
$a = array (10, 12, 13, 15, 10);
$n = count ( $a );
minAdjDifference( $a , $n );
?>
|
Javascript
<script>
function minAdjDifference( arr, n)
{
if (n < 2)
return ;
let res = Math.abs(arr[1] - arr[0]);
for (let i = 2; i < n; i++)
res = Math.min(res, Math.abs(arr[i] - arr[i - 1]));
res = Math.min(res, Math.abs(arr[n - 1] - arr[0]));
document.write( "Min Difference = " + res);
}
let a = [ 10, 12, 13, 15, 10 ];
let n = a.length;
minAdjDifference(a, n);
</script>
|
Time Complexity: O(N), as we are using a loop to traverse N times.
Auxiliary Space: O(1), as we are not using any extra space.
This article is contributed by striver. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.