Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Minimize value of |A – X| + |B – Y| + |C – Z| such that X * Y = Z

  • Difficulty Level : Medium
  • Last Updated : 29 Sep, 2021

Given three integers A, B, and C, the task is to find the minimum possible value of |A – X| + |B – Y| + |C – Z| such that X * Y = Z.

Example:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: A = 19, B = 28, C = 522
Output: 2
Explanation: The most optimal choice of X, Y, and Z for the given A, B, and C are X = 18, Y = 29, and Z = 522. The equation X * Y = Z holds true and the value of |A – X| + |B – Y| + |C – Z| = 2 which is minimum possible.



Input: A = 11, B = 11, C = 121
Output: 0
Explanation: The given values of A, B, and C satisfies A * B = C. Therefore the most optimal choice is X = A, Y = B, and Z = C.

 

Approach: The above problem can be solved using the following observations:

  • The maximum value of |A – X| + |B – Y| + |C – Z| can be A + B + C for X, Y, and Z equal to 0.
  • Based on the above observation, iterating over all the values of i * j  such that i * j <= 2 * C  and choosing the best value is the optimal choice.

Therefore, iterate over all values of i in the range [1, 2*C], and for every i, iterate over all values of j such that i * j <= 2 * C and keep track of the minimum possible value of |A – i| + |B – j| + |C –  i * j|.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum possible
// value of |A - X| + |B - Y| + |C - Z|
// such that X * Y = Z for given A, B and C
int minimizeCost(int A, int B, int C)
{
    // Stores the minimum value of
    // |A - X| + |B - Y| + |C - Z|
    // such that X * Y = Z
    int ans = A + B + C;
 
    // Iterate over all values of i
    // in the range [1, 2*C]
    for (int i = 1; i <= 2 * C; i++) {
        int j = 0;
 
        // Iterate over all values of
        // j such that i*j <= 2*c
        while (i * j <= 2 * C) {
 
            // Update the value of ans
            ans = min(ans, abs(A - i) + abs(B - j)
                               + abs(i * j - C));
            j++;
        }
    }
 
    // Return answer
    return ans;
}
 
// Driver Code
int main()
{
    int A = 19, B = 28, C = 522;
    cout << minimizeCost(A, B, C);
 
    return 0;
}

Java




// Java program for the above approach
 
class GFG{
 
// Function to find the minimum possible
// value of |A - X| + |B - Y| + |C - Z|
// such that X * Y = Z for given A, B and C
public static int minimizeCost(int A, int B, int C)
{
    // Stores the minimum value of
    // |A - X| + |B - Y| + |C - Z|
    // such that X * Y = Z
    int ans = A + B + C;
 
    // Iterate over all values of i
    // in the range [1, 2*C]
    for (int i = 1; i <= 2 * C; i++) {
        int j = 0;
 
        // Iterate over all values of
        // j such that i*j <= 2*c
        while (i * j <= 2 * C) {
 
            // Update the value of ans
            ans = Math.min(ans, Math.abs(A - i) + Math.abs(B - j)
                               + Math.abs(i * j - C));
            j++;
        }
    }
 
    // Return answer
    return ans;
}
 
// Driver Code
public static void main(String args[])
{
    int A = 19, B = 28, C = 522;
    System.out.print(minimizeCost(A, B, C));
 
}
 
}
 
// This code is contributed by gfgking.

Python3




# Python Program to implement
# the above approach
 
# Function to find the minimum possible
# value of |A - X| + |B - Y| + |C - Z|
# such that X * Y = Z for given A, B and C
def minimizeCost(A, B, C):
 
    # Stores the minimum value of
    # |A - X| + |B - Y| + |C - Z|
    # such that X * Y = Z
    ans = A + B + C
 
    # Iterate over all values of i
    # in the range [1, 2*C]
    for i in range(1, 2 * C + 1):
        j = 0
 
        # Iterate over all values of
        # j such that i*j <= 2*c
        while (i * j <= 2 * C):
 
            # Update the value of ans
            ans = min(ans, abs(A - i) + abs(B - j) + abs(i * j - C))
            j += 1
     
 
    # Return answer
    return ans
 
 
# Driver Code
A = 19
B = 28
C = 522
print(minimizeCost(A, B, C))
 
# This code is contributed by Saurabh Jaiswal

C#




// C# program for the above approach
using System;
class GFG{
 
// Function to find the minimum possible
// value of |A - X| + |B - Y| + |C - Z|
// such that X * Y = Z for given A, B and C
public static int minimizeCost(int A, int B, int C)
{
   
    // Stores the minimum value of
    // |A - X| + |B - Y| + |C - Z|
    // such that X * Y = Z
    int ans = A + B + C;
 
    // Iterate over all values of i
    // in the range [1, 2*C]
    for (int i = 1; i <= 2 * C; i++) {
        int j = 0;
 
        // Iterate over all values of
        // j such that i*j <= 2*c
        while (i * j <= 2 * C) {
 
            // Update the value of ans
            ans = Math.Min(ans, Math.Abs(A - i) + Math.Abs(B - j)
                               + Math.Abs(i * j - C));
            j++;
        }
    }
 
    // Return answer
    return ans;
}
 
// Driver Code
public static void Main(String []args)
{
    int A = 19, B = 28, C = 522;
    Console.Write(minimizeCost(A, B, C));
}
}
 
// This code is contributed by shivanisinghss2110

Javascript




<script>
        // JavaScript Program to implement
        // the above approach
 
        // Function to find the minimum possible
        // value of |A - X| + |B - Y| + |C - Z|
        // such that X * Y = Z for given A, B and C
        function minimizeCost(A, B, C)
        {
         
            // Stores the minimum value of
            // |A - X| + |B - Y| + |C - Z|
            // such that X * Y = Z
            let ans = A + B + C;
 
            // Iterate over all values of i
            // in the range [1, 2*C]
            for (let i = 1; i <= 2 * C; i++) {
                let j = 0;
 
                // Iterate over all values of
                // j such that i*j <= 2*c
                while (i * j <= 2 * C) {
 
                    // Update the value of ans
                    ans = Math.min(ans, Math.abs(A - i) + Math.abs(B - j)
                        + Math.abs(i * j - C));
                    j++;
                }
            }
 
            // Return answer
            return ans;
        }
 
        // Driver Code
        let A = 19, B = 28, C = 522;
        document.write(minimizeCost(A, B, C));
 
     // This code is contributed by Potta Lokesh
    </script>
Output: 
2

 

Time Complexity: O(C*log C)
Auxiliary Space: O(1)




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!