# Minimize the sum of the squares of the sum of elements of each group the array is divided into

Given an array consisting of even number of elements, the task is to divide the array into M group of elements (every group must contain at least 2 elements) such that the sum of the squares of the sums of each group is minimized i.e.,
(sum_of_elements_of_group1)2 + (sum_of_elements_of_group2)2 + (sum_of_elements_of_group3)2 + (sum_of_elements_of_group4)2 + ….. + (sum_of_elements_of_groupM)2

Examples:

Input: arr[] = {5, 8, 13, 45, 6, 3}
Output: 2824
Groups can be (3, 45), (5, 13) and (6, 8)
(3 + 45)2 + (5 + 13)2 + (6 + 8)2 = 482 + 182 + 142 = 2304 + 324 + 196 = 2824

Input: arr[] = {53, 28, 143, 5}
Output: 28465

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Our final sum depends on two factors:

1. Sum of the elements of each group.
2. The sum of squares of all such groups.

If we minimize both the factors mentioned above, we can minimize the result. To minimize the second factor we should make groups of minimum size i.e. just two elements. To minimize first factor we can pair smallest number with largest number, second smallest number to second largest number and so on.

Below is the implementation of the above approach:

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the minimized sum ` `unsigned ``long` `long` `findAnswer(``int` `n,  ` `                       ``vector<``int``>& arr) ` `{ ` ` `  `    ``// Sort the array to pair the elements ` `    ``sort(arr.begin(), arr.end()); ` ` `  `    ``// Variable to hold the answer ` `    ``unsigned ``long` `long` `sum = 0; ` ` `  `    ``// Pair smallest with largest, second ` `    ``// smallest with second largest, and  ` `    ``// so on ` `    ``for` `(``int` `i = 0; i < n / 2; ++i) { ` `        ``sum += (arr[i] + arr[n - i - 1]) ` `               ``* (arr[i] + arr[n - i - 1]); ` `    ``} ` ` `  `    ``return` `sum; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``std::vector<``int``> arr = { 53, 28, 143, 5 }; ` `    ``int` `n = arr.size(); ` `    ``cout << findAnswer(n, arr); ` `} `

 `// Java implementation of the approach ` `import` `java.util.*; ` ` `  `class` `GFG  ` `{ ` ` `  `    ``// Function to return the minimized sum ` `    ``static` `int` `findAnswer(``int` `n, ``int``[] arr) ` `    ``{ ` ` `  `        ``// Sort the array to pair the elements ` `        ``Arrays.sort(arr); ` ` `  `        ``// Variable to hold the answer ` `        ``int` `sum = ``0``; ` ` `  `        ``// Pair smallest with largest, second ` `        ``// smallest with second largest, and  ` `        ``// so on ` `        ``for` `(``int` `i = ``0``; i < n / ``2``; ++i)  ` `        ``{ ` `            ``sum += (arr[i] + arr[n - i - ``1``]) ` `                    ``* (arr[i] + arr[n - i - ``1``]); ` `        ``} ` ` `  `        ``return` `sum; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int``[] arr = {``53``, ``28``, ``143``, ``5``}; ` `        ``int` `n = arr.length; ` `        ``System.out.println(findAnswer(n, arr)); ` `    ``} ` `} ` ` `  `// This code has been contributed by 29AjayKumar `

 `# Python 3 implementation of the approach ` ` `  `# Function to return the minimized sum ` `def` `findAnswer(n, arr): ` `     `  `    ``# Sort the array to pair the elements ` `    ``arr.sort(reverse ``=` `False``) ` ` `  `    ``# Variable to hold the answer ` `    ``sum` `=` `0` ` `  `    ``# Pair smallest with largest, second ` `    ``# smallest with second largest, and  ` `    ``# so on ` `    ``for` `i ``in` `range``(``int``(n ``/` `2``)): ` `        ``sum` `+``=` `((arr[i] ``+` `arr[n ``-` `i ``-` `1``]) ``*`  `                ``(arr[i] ``+` `arr[n ``-` `i ``-` `1``])) ` ` `  `    ``return` `sum` ` `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``arr ``=` `[``53``, ``28``, ``143``, ``5``] ` `    ``n ``=` `len``(arr) ` `    ``print``(findAnswer(n, arr)) ` ` `  `# This code is contributed by ` `# Surendra_Gangwar `

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `// Function to return the minimized sum ` `static` `int` `findAnswer(``int` `n, ``int` `[]arr) ` `{ ` ` `  `    ``// Sort the array to pair the elements ` `    ``Array.Sort(arr); ` ` `  `    ``// Variable to hold the answer ` `    ``int` `sum = 0; ` ` `  `    ``// Pair smallest with largest, second ` `    ``// smallest with second largest, and  ` `    ``// so on ` `    ``for` `(``int` `i = 0; i < n / 2; ++i)  ` `    ``{ ` `        ``sum += (arr[i] + arr[n - i - 1]) ` `            ``* (arr[i] + arr[n - i - 1]); ` `    ``} ` ` `  `    ``return` `sum; ` `} ` ` `  `// Driver code ` `static` `void` `Main() ` `{ ` `    ``int` `[]arr = { 53, 28, 143, 5 }; ` `    ``int` `n = arr.Length; ` `    ``Console.WriteLine(findAnswer(n, arr)); ` `} ` `} ` ` `  `// This code is contributed by mits `

 ` `

Output:
```28465
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :