Related Articles
Minimize the non-zero elements in the Array by given operation
• Last Updated : 01 Jun, 2020

Given an array arr[] of length N, the task is to minimize the count of the number of non-zero elements by adding the value of the current element to any of its adjacent element and subtracting from the current element at most once.

Examples:

Input: arr[] = { 1, 0, 1, 0, 0, 1 }
Output: 2
Explanation:
Operation 1: arr -> arr, arr[] = {0, 1, 1, 0, 0, 1}
Operation 2: arr -> arr, arr[] = {0, 2, 0, 0, 0, 1}
Count of non-zero elements = 2

Input: arr[] = { 1, 0, 1, 1, 1, 0, 1 }
Output: 3
Explanation:
Operation 1: arr -> arr, arr[] = {1, 0, 0, 2, 1, 0, 1}
Operation 2: arr -> arr, arr[] = {1, 0, 0, 3, 0, 0, 1}
Count of non-zero elements = 3

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The idea is to use greedy algorithms to choose greedily at each step. The key observation in the problem is there can be only three possibilities of three consecutive indices i, j and k, i.e.

• Both the end index have non-zero element.
• Any one of the index have non-zero element.

In the above two cases, we can always add the values to the middle element and substract to the adjacent elements. Similarly, we can greedily choose the operations and update the elements of the array to minimize the non-zero elements.

Below is the implementation of the above approach:

## C++

 `// C++ implementation to minimize the``// non-zero elements in the array`` ` `#include ``using` `namespace` `std;`` ` `// Function to minimize the non-zero``// elements in the given array``int` `minOccupiedPosition(``int` `A[], ``int` `n)``{`` ` `    ``// To store the min pos needed``    ``int` `minPos = 0;`` ` `    ``// Loop to iterate over the elements``    ``// of the given array``    ``for` `(``int` `i = 0; i < n; ++i) {`` ` `        ``// If current position A[i] is occupied``        ``// the we can place A[i], A[i+1] and A[i+2]``        ``// elements together at A[i+1] if exists.``        ``if` `(A[i] > 0) {``            ``++minPos;``            ``i += 2;``        ``}``    ``}`` ` `    ``return` `minPos;``}`` ` `// Driver Code``int` `main()``{``    ``int` `A[] = { 8, 0, 7, 0, 0, 6 };``    ``int` `n = ``sizeof``(A) / ``sizeof``(A);`` ` `    ``// Function Call``    ``cout << minOccupiedPosition(A, n);``    ``return` `0;``}`

## Java

 `// Java implementation to minimize the``// non-zero elements in the array`` ` `class` `GFG{`` ` `// Function to minimize the non-zero``// elements in the given array``static` `int` `minOccupiedPosition(``int` `A[], ``int` `n)``{``     ` `    ``// To store the min pos needed``    ``int` `minPos = ``0``;`` ` `    ``// Loop to iterate over the elements``    ``// of the given array``    ``for` `(``int` `i = ``0``; i < n; ++i)``    ``{`` ` `        ``// If current position A[i] is occupied``        ``// the we can place A[i], A[i+1] and A[i+2]``        ``// elements together at A[i+1] if exists.``        ``if` `(A[i] > ``0``) {``            ``++minPos;``            ``i += ``2``;``        ``}``    ``}``    ``return` `minPos;``}`` ` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``int` `A[] = { ``8``, ``0``, ``7``, ``0``, ``0``, ``6` `};``    ``int` `n = A.length;`` ` `    ``// Function Call``    ``System.out.print(minOccupiedPosition(A, n));``}``}`` ` `// This code is contributed by gauravrajput1`

## Python3

 `# Python3 implementation to minimize the``# non-zero elements in the array`` ` `# Function to minimize the non-zero``# elements in the given array``def` `minOccupiedPosition(A, n):`` ` `    ``# To store the min pos needed``    ``minPos ``=` `0`` ` `    ``# Loop to iterate over the elements``    ``# of the given array``    ``i ``=` `0``    ``while` `i < n:`` ` `        ``# If current position A[i] is``        ``# occupied the we can place A[i],``        ``# A[i+1] and A[i+2] elements``        ``# together at A[i+1] if exists.``        ``if``(A[i] > ``0``):`` ` `            ``minPos ``+``=` `1``            ``i ``+``=` `2``        ``i ``+``=` `1``         ` `    ``return` `minPos`` ` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``     ` `    ``A ``=` `[ ``8``, ``0``, ``7``, ``0``, ``0``, ``6` `]``    ``n ``=` `len``(A)`` ` `    ``# Function Call ``    ``print``(minOccupiedPosition(A, n))``     ` `# This code is contributed by Shivam Singh`

## C#

 `// C# implementation to minimize the ``// non-zero elements in the array ``using` `System;`` ` `class` `GFG {``     ` `// Function to minimize the non-zero ``// elements in the given array ``static` `int` `minOccupiedPosition(``int``[] A, ``int` `n) ``{ ``         ` `    ``// To store the min pos needed ``    ``int` `minPos = 0; ``     ` `    ``// Loop to iterate over the elements ``    ``// of the given array ``    ``for``(``int` `i = 0; i < n; ++i) ``    ``{ ``         ` `       ``// If current position A[i] is occupied ``       ``// the we can place A[i], A[i+1] and A[i+2] ``       ``// elements together at A[i+1] if exists. ``       ``if` `(A[i] > 0) ``       ``{ ``           ``++minPos; ``           ``i += 2; ``       ``} ``    ``} ``    ``return` `minPos; ``} `` ` `// Driver code    ``static` `void` `Main() ``{``    ``int``[] A = { 8, 0, 7, 0, 0, 6 }; ``    ``int` `n = A.Length; `` ` `    ``// Function Call ``    ``Console.WriteLine(minOccupiedPosition(A, n));``}``}`` ` `// This code is contributed by divyeshrabadiya07`
Output:
```2
```

Time Complexity: O(N).

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up