Skip to content
Related Articles

Related Articles

Minimize the maximum difference of any pair by doubling odd elements and reducing even elements by half
  • Difficulty Level : Easy
  • Last Updated : 15 Jan, 2021

Given an array arr[] consisting of N positive integers, the task is to minimize the maximum difference between any pair of array elements by multiplying any odd array element by 2 and dividing any even array element by 2.

Examples:

Input: arr[] = {4, 1, 5, 20, 3}
Output: 3
Explanation:
Operation 1: Multiplying arr[1] by 2 modifies arr[] to {4, 2, 5, 20, 3}.
Operation 2: Dividing arr[3] by 2 modifies arr[] to {4, 2, 5, 10, 3}.
Operation 3: Dividing arr[3] by 2 modifies arr[] to {4, 2, 5, 5, 3}.
Therefore, the minimum of the maximum difference of any pair in the array = 5 – 2 = 3.

Input: arr[] = {1, 2, 5, 9}
Output: 7
Explanation:
Operation 1: Multiplying arr[0] by 2 modifies arr[] to { 2, 2, 5, 9 }
Operation 2: Multiplying arr[2] by 2 modifies arr[] to {2, 2, 10, 9 }
Therefore, the minimum of the maximum difference of any pair in the array = 9 – 2 = 7.

Approach: Follow the steps below to solve the given problem:



Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to minimize the maximum
// difference between any pair of elements
// of the array by the given operations
int minimumMaxDiff(vector<int>& nums)
{
    set<int> s;
 
    // Traverse the array
    for (int i = 0; i < nums.size(); i++) {
 
        // If current element is even
        if (nums[i] % 2 == 0)
 
            // Insert it into even
            s.insert(nums[i]);
 
        // Otherwise
        else
 
            // Make it even by multiplying
            // by 2 and insert it into set
            s.insert(nums[i] * 2);
    }
 
    // Calculate difference between first
    // and the last element of the set
    int res = *s.rbegin() - *s.begin();
 
    // Iterate until difference is minimized
    while (*s.rbegin() % 2 == 0) {
        int x = *s.rbegin();
 
        // Erase the current element
        s.erase(x);
 
        // Reduce current element by half
        // and insert it into the Set
        s.insert(x / 2);
 
        // Update difference
        res = min(res, *s.rbegin()
                           - *s.begin());
    }
 
    // Return the resultant difference
    return res;
}
 
// Driver Code
int main()
{
    vector<int> arr = { 1, 2, 5, 9 };
    cout << minimumMaxDiff(arr);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.io.*;
import java.util.*;
 
class GFG
{
 
  // Function to minimize the maximum
  // difference between any pair of elements
  // of the array by the given operations
  static int minimumMaxDiff(int[] nums)
  {
    TreeSet<Integer> s = new TreeSet<Integer>();
 
    // Traverse the array
    for (int i = 0; i < nums.length; i++)
    {
 
      // If current element is even
      if (nums[i] % 2 == 0)
 
        // Insert it into even
        s.add(nums[i]);
 
      // Otherwise
      else
 
        // Make it even by multiplying
        // by 2 and insert it into set
        s.add(nums[i] * 2);
    }
 
    // Calculate difference between first
    // and the last element of the set
    int res = s.last() - s.first();
 
    // Iterate until difference is minimized
    while (s.last() % 2 == 0)
    {
      int x = s.last();
 
      // Erase the current element
      s.remove(x);
 
      // Reduce current element by half
      // and insert it into the Set
      s.add(x / 2);
 
      // Update difference
      res = Math.min(res, s.last() - s.first());
    }
 
    // Return the resultant difference
    return res;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int[] arr = new int[] { 1, 2, 5, 9 };
    System.out.print(minimumMaxDiff(arr));
  }
}
 
// This code is contributed by jithin

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function to minimize the maximum
# difference between any pair of elements
# of the array by the given operations
def minimumMaxDiff(nums):
     
    s = {}
 
    # Traverse the array
    for i in range(len(nums)):
 
        # If current element is even
        if (nums[i] % 2 == 0):
 
            # Insert it into even
            s[nums[i]] = 1
 
        # Otherwise
        else:
 
            # Make it even by multiplying
            # by 2 and insert it into set
            s[nums[i] * 2] = 1
 
    # Calculate difference between first
    # and the last element of the set
    sr = list(s.keys())
    res = sr[-1] - sr[0]
 
    # Iterate until difference is minimized
    while (list(s.keys())[-1] % 2 == 0):
        r = list(s.keys())
        x = r[-1]
 
        # Erase the current element
        del s[x]
 
        # Reduce current element by half
        # and insert it into the Set
        s[x // 2] = 1
 
        rr = list(s.keys())
 
        # Update difference
        res = min(res, rr[-1] - r[0])
 
    # Return the resultant difference
    return res
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 1, 2, 5, 9 ]
     
    print (minimumMaxDiff(arr))
     
# This code is contributed by mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
using System.Collections.Generic;
using System.Linq; 
 
class GFG
{
 
  // Function to minimize the maximum
  // difference between any pair of elements
  // of the array by the given operations
  static int minimumMaxDiff(int[] nums)
  {
    HashSet<int> s = new HashSet<int>();
 
    // Traverse the array
    for (int i = 0; i < nums.Length; i++) {
 
      // If current element is even
      if (nums[i] % 2 == 0)
 
        // Insert it into even
        s.Add(nums[i]);
 
      // Otherwise
      else
 
        // Make it even by multiplying
        // by 2 and insert it into set
        s.Add(nums[i] * 2);
    }
 
    // Calculate difference between first
    // and the last element of the set
    int res = s.Last() - s.First();
 
    // Iterate until difference is minimized
    while (s.Last() % 2 == 0) {
      int x = s.Last();
 
      // Erase the current element
      s.Remove(x);
 
      // Reduce current element by half
      // and insert it into the Set
      s.Add(x / 2);
 
      // Update difference
      res = Math.Min(res, s.Last() - s.First());
    }
 
    // Return the resultant difference
    return res;
  }
 
  // Driver code
  static public void Main()
  {
    int[] arr = new int[] { 1, 2, 5, 9 };
    Console.WriteLine(minimumMaxDiff(arr));
  }
}
 
// This code is contributed by Dharanendra L V

chevron_right


Output: 

7

 

Time Complexity: O(N*log N)
Auxiliary Space: O(N)

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :