Skip to content
Related Articles
Open in App
Not now

Related Articles

Minimize the max of Array by breaking array elements at most K times

Improve Article
Save Article
  • Last Updated : 23 Mar, 2023
Improve Article
Save Article

Given an integer array arr[] of size N and a positive integer K, the task is to minimize the maximum of the array by replacing any element arr[i] into two positive elements (X, Y) at most K times such that arr[i] = X + Y.

Examples:

Input: arr = {9}, K = 2
Output: 3
Explanation: Operation 1: Replace element 9 into {6, 3} then array becomes {6, 3}.
Operation 2: Replace element 6 into {3, 3} then array becomes {3, 3, 3}.
So, the maximum element in arr[] after performing at most K operations are 3.

Input: arr = {2, 4, 8, 2}, K = 4
Output: 2

An approach using Binary Search:

The problem can be solved using binary search based on the following idea:

Initialize start with minimum possible answer and end with maximum possible answer, then calculate the threshold value mid = (start + end) /2 and check if it is possible to make every element less than or equals to mid in at most K operations. If it is possible, update the result and shift end of range to mid – 1. Otherwise, shift start of range to mid + 1.

Follow the steps below to implement the above idea:

  • Initialize a variable start = 1 and end = maximum possible answer.
  • Initialize a variable result that will store the answer
  • While start ≤ end
    • Calculate mid = (start + end) / 2
    • Calculate the maximum number of operations required to make every element less than or equal to mid.
    • Iterate over the given array
      • Check if the current element is greater than mid
        • If true, then calculate the operation required to make this element less than or equals to mid
    • Check if the total operation required to make every element less than or equal to mid is greater less than equal to K
      • If true, update the result and move the end to mid – 1
      • Otherwise, move the start to mid + 1.
  • Return the result.

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum of maximum
int minimizeMaxElement(vector<int>& arr, int K)
{
    // Initialize a variable start = 1 and
    // end = maximum possible answer.
    int start = 1,
        end = *max_element(arr.begin(), arr.end());
 
    // Initialize a variable result which
    // will store the answer
    int result = -1;
 
    // Do while start <= end
    while (start <= end) {
 
        // Calculate mid = (start + end) / 2;
        int mid = (start + end) >> 1;
 
        // Calculate maximum number of
        // operation required to make
        // every element less than or
        // equal to mid.
        int operation = 0;
 
        // Iterate over the given array
        for (int i = 0; i < arr.size(); i++) {
 
            // Check if current element is
            // greater than mid, If true,
            // then calculate the operation
            // required to make this element
            // less than or equals to mid
            if (arr[i] > mid) {
                operation += ceil((double)arr[i] / mid) - 1;
            }
        }
 
        // Check if total operation
        // required to make every element
        // less than or equal to mid is
        // greater less than equal to K
        // If true, update the result and
        // move the end to mid - 1
        if (operation <= K) {
            result = mid;
            end = mid - 1;
        }
        else {
            start = mid + 1;
        }
    }
 
    // Return the result.
    return result;
}
 
// Driver code
int main()
{
 
    vector<int> arr = { 2, 4, 8, 2 };
    int K = 4;
 
    // Functions call
    cout << minimizeMaxElement(arr, K);
 
    return 0;
}

Java




// Java code to implement the approach
import java.io.*;
 
public class GFG {
     
// Function to find the minimum of maximum
static int minimizeMaxElement(int []arr, int K)
{
    // Initialize a variable start = 1 and
    // end = maximum possible answer.
    int start = 1;
     
    int max = 0;
      
      for(int i=0; i<arr.length; i++ ) {
         if(arr[i]>max) {
            max = arr[i];
         }
      }
       
    int end = max;
 
    // Initialize a variable result which
    // will store the answer
    int result = -1;
 
    // Do while start <= end
    while (start <= end) {
 
        // Calculate mid = (start + end) / 2;
        int mid = (start + end) >> 1;
 
        // Calculate maximum number of
        // operation required to make
        // every element less than or
        // equal to mid.
        int operation = 0;
 
        // Iterate over the given array
        for (int i = 0; i < arr.length; i++) {
 
            // Check if current element is
            // greater than mid, If true,
            // then calculate the operation
            // required to make this element
            // less than or equals to mid
            if (arr[i] > mid) {
                operation += Math.ceil((double)arr[i] / mid) - 1;
            }
        }
 
        // Check if total operation
        // required to make every element
        // less than or equal to mid is
        // greater less than equal to K
        // If true, update the result and
        // move the end to mid - 1
        if (operation <= K) {
            result = mid;
            end = mid - 1;
        }
        else {
            start = mid + 1;
        }
    }
 
    // Return the result.
    return result;
}
 
    // Driver code
    public static void main (String[] args) {
    int []arr = { 2, 4, 8, 2 };
    int K = 4;
 
    // Functions call
    System.out.println(minimizeMaxElement(arr, K));
 
    }
}
 
// This code is contributed by AnkThon

Python3




# Python3 code to implement the above approach
 
from math import *
 
# Function to find the minimum of maximum
def minimizeMaxElement(arr, K) :
 
    # Initialize a variable start = 1 and
    # end = maximum possible answer.
    start = 1;
    end = max(arr)
     
    # Initialize a variable result which
    # will store the answer
    result = -1;
 
    # Do while start <= end
    while (start <= end) :
 
        # Calculate mid = (start + end) / 2;
        mid = (start + end) >> 1;
 
        # Calculate maximum number of
        # operation required to make
        # every element less than or
        # equal to mid.
        operation = 0;
 
        # Iterate over the given array
        for i in range(len(arr)) :
 
            # Check if current element is
            # greater than mid, If true,
            # then calculate the operation
            # required to make this element
            # less than or equals to mid
            if (arr[i] > mid) :
                operation += ceil(arr[i] / mid) - 1;
 
        # Check if total operation
        # required to make every element
        # less than or equal to mid is
        # greater less than equal to K
        # If true, update the result and
        # move the end to mid - 1
        if (operation <= K) :
            result = mid;
            end = mid - 1;
         
        else :
            start = mid + 1;
 
    # Return the result.
    return result;
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 2, 4, 8, 2 ];
    K = 4;
 
    # Functions call
    print(minimizeMaxElement(arr, K));
 
    # This code is contributed by AnkThon

C#




// C# code to implement the approach
using System;
class GFG {
 
  // Function to find the minimum of maximum
  static int minimizeMaxElement(int[] arr, int K)
  {
    // Initialize a variable start = 1 and
    // end = maximum possible answer.
    int start = 1;
 
    int max = 0;
 
    for (int i = 0; i < arr.Length; i++) {
      if (arr[i] > max) {
        max = arr[i];
      }
    }
 
    int end = max;
 
    // Initialize a variable result which
    // will store the answer
    int result = -1;
 
    // Do while start <= end
    while (start <= end) {
 
      // Calculate mid = (start + end) / 2;
      int mid = (start + end) >> 1;
 
      // Calculate maximum number of
      // operation required to make
      // every element less than or
      // equal to mid.
      double operation = 0;
 
      // Iterate over the given array
      for (int i = 0; i < arr.Length; i++) {
 
        // Check if current element is
        // greater than mid, If true,
        // then calculate the operation
        // required to make this element
        // less than or equals to mid
        if (arr[i] > mid) {
          operation
            += Math.Ceiling((float)arr[i] / mid)
            - 1;
        }
      }
 
      // Check if total operation
      // required to make every element
      // less than or equal to mid is
      // greater less than equal to K
      // If true, update the result and
      // move the end to mid - 1
      if (operation <= K) {
        result = mid;
        end = mid - 1;
      }
      else {
        start = mid + 1;
      }
    }
 
    // Return the result.
    return result;
  }
 
  // Driver code
  public static void Main()
  {
    int[] arr = { 2, 4, 8, 2 };
    int K = 4;
 
    // Functions call
    Console.WriteLine(minimizeMaxElement(arr, K));
  }
}
 
// This code is contributed by Samim Hossain Mondal.

Javascript




// JavaScript code for the above approach
 
// Function to find the minimum of maximum
function minimizeMaxElement(arr, K)
{
    // Initialize a variable start = 1 and
    // end = maximum possible answer.
    let start = 1, end = Math.max(... arr);
 
    // Initialize a variable result which
    // will store the answer
    let result = -1;
 
    // Do while start <= end
    while (start <= end) {
 
        // Calculate mid = (start + end) / 2;
        let mid = Math.floor((start + end) >> 1);
 
        // Calculate maximum number of
        // operation required to make
        // every element less than or
        // equal to mid.
        let operation = 0;
 
        // Iterate over the given array
        for (let i = 0; i < arr.length; i++) {
 
            // Check if current element is
            // greater than mid, If true,
            // then calculate the operation
            // required to make this element
            // less than or equals to mid
            if (arr[i] > mid) {
                operation += Math.ceil(arr[i] / mid) - 1;
            }
        }
 
        // Check if total operation
        // required to make every element
        // less than or equal to mid is
        // greater less than equal to K
        // If true, update the result and
        // move the end to mid - 1
        if (operation <= K) {
            result = mid;
            end = mid - 1;
        }
        else {
            start = mid + 1;
        }
    }
 
    // Return the result.
    return result;
}
 
// Driver code
 
let arr = [ 2, 4, 8, 2 ];
let K = 4;
 
// Functions call
console.log(minimizeMaxElement(arr, K));
// This code is contributed by Potta Lokesh

Output

2

Time Complexity: O(log2(max(arr)) * N), where max(arr) is the maximum element and N is the size of the given array.
Auxiliary Space: O(1)

Another Approach: Greedy approach with a priority queue

Another approach to solve this problem is to use a priority queue. First, we insert all the elements of the given array into the priority queue. Then, we extract the maximum element from the priority queue, break it into two halves, and insert both halves back into the priority queue. We repeat this process K times or until the maximum element in the priority queue becomes 1 or less than 1.

The idea behind this approach is that breaking a large element into two halves reduces the maximum element of the array. By repeating this process, we can gradually reduce the maximum element of the array until it becomes 1 or less than 1.

The steps of this approach are:

  1. Initialize a priority queue with the elements of the given array.
  2. Initialize a variable max_element with the maximum element of the priority queue.
  3. Repeat the following K times or until max_element becomes 1 or less than 1:
  4. Extract the maximum element from the priority queue and store it in a variable element.
  5. Break element into two halves and insert both halves back into the priority queue.
  6. Update max_element with the maximum element of the priority queue.
  7. If max_element becomes 1 or less than 1, break the loop.
  8. Return max_element.

Below is the implementation of the above approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
int minimizeMaxElement(vector<int>& arr, int K) {
    priority_queue<int> pq(arr.begin(), arr.end());
    int max_element = pq.top();
 
    while (K--) {
        int element = pq.top();
        pq.pop();
        int half = element / 2;
        pq.push(half);
        pq.push(element - half);
 
        max_element = pq.top();
 
        if (max_element <= 1) {
            break;
        }
    }
 
    return max_element;
}
 
int main() {
    vector<int> arr = { 9 };
    int K;
 
    arr = { 2, 4, 8, 2 };
    K = 4;
 
    cout << minimizeMaxElement(arr, K) << endl;
 
    return 0;
}

Python3




import heapq
 
def minimizeMaxElement(arr, K):
    # Initialize a max heap with the elements in the array
    pq = [-a for a in arr]
    heapq.heapify(pq)
 
    # Pop the largest element from the heap, divide it by 2, and add the halves
    # back to the heap until K iterations or the largest element is 1
    max_element = -pq[0]
    for i in range(K):
        element = -heapq.heappop(pq)
        half = element // 2
        heapq.heappush(pq, -half)
        heapq.heappush(pq, -(element - half))
 
        max_element = -pq[0]
        if max_element <= 1:
            break
 
    # Return the largest element in the heap (i.e., the smallest max element)
    return max_element
 
# Driver program
arr = [9]
K = 3
 
arr = [2, 4, 8, 2]
K = 4
print(minimizeMaxElement(arr, K))

C#




using System;
using System.Collections.Generic;
using System.Linq;
 
namespace minimizeMaxElement
{
  class Program
  {
    static void Main(string[] args)
    {
      List<int> arr = new List<int> { 9 };
      int K;
 
      arr = new List<int> { 2, 4, 8, 2 };
      K = 4;
 
      Console.WriteLine(MinimizeMaxElement(arr, K));
    }
 
    // Function to reduce the maximum element in array to 1 through the K operations
    static int MinimizeMaxElement(List<int> arr, int K)
    {
      // Create a priority queue
      PriorityQueue<int> pq = new PriorityQueue<int>(arr);
      int max_element = pq.Peek();
 
      // While K is not 0
      while (K-- > 0)
      {
        // Pop the top element from the priority queue
        int element = pq.Pop();
 
        // Calculate the half of the element
        int half = element / 2;
 
        // Push the half and the difference of the element and half to the priority queue
        pq.Push(half);
        pq.Push(element - half);
 
        // Update the maximum element
        max_element = pq.Peek();
 
        // If the maximum element is 1, break the loop
        if (max_element <= 1)
          break;
      }
 
      // Return the maximum element
      return max_element;
    }
  }
 
  // Generic Priority Queue class
  public class PriorityQueue<T> where T : IComparable<T>
    {
        List<T> data;
 
        // Constructor
        public PriorityQueue()
        {
            this.data = new List<T>();
        }
 
        // Overloaded constructor
        public PriorityQueue(IEnumerable<T> collection)
        {
            this.data = new List<T>(collection);
            for (int i = (data.Count / 2) - 1; i >= 0; i--)
                HeapifyDown(i);
        }
 
        // Function to get the size of the priority queue
        public int Count()
        {
            return data.Count;
        }
 
        // Function to check if the priority queue is empty
        public bool IsEmpty()
        {
            return Count() == 0;
        }
 
        // Function to get the top element of the priority queue
        public T Peek()
        {
            if (IsEmpty())
                throw new Exception("Priority queue is empty.");
 
            return data[0];
        }
 
        // Function to pop the top element from the priority queue
        public T Pop()
        {
            if (IsEmpty())
                throw new Exception("Priority queue is empty.");
 
            T element = Peek();
            Swap(0, Count() - 1);
            data.RemoveAt(Count() - 1);
            HeapifyDown(0);
 
            return element;
        }
 
        // Function to push an element to the priority queue
        public void Push(T item)
        {
            data.Add(item);
            HeapifyUp(Count() - 1);
        }
 
        // Function to heapify up
        private void HeapifyUp(int index)
        {
            if (index == 0)
                return;
            int parentIndex = (index - 1) / 2;
            if (data[index].CompareTo(data[parentIndex]) > 0)
            {
                Swap(index, parentIndex);
                HeapifyUp(parentIndex);
            }
        }
 
        // Function to heapify down
        private void HeapifyDown(int index)
        {
            int leftIndex = (2 * index) + 1;
            int rightIndex = (2 * index) + 2;
            int largestIndex = index;
 
            if (leftIndex < Count() && data[leftIndex].CompareTo(data[largestIndex]) > 0)
                largestIndex = leftIndex;
 
            if (rightIndex < Count() && data[rightIndex].CompareTo(data[largestIndex]) > 0)
                largestIndex = rightIndex;
 
            if (largestIndex != index)
            {
                Swap(index, largestIndex);
                HeapifyDown(largestIndex);
            }
        }
 
        // Function to swap two elements
        private void Swap(int firstIndex, int secondIndex)
        {
            T temp = data[firstIndex];
            data[firstIndex] = data[secondIndex];
            data[secondIndex] = temp;
        }
    }
}

Output

2

Time Complexity: O(K*logN), where N is the size of the array

Auxiliary Space: O(N), where N is the size of the array


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!