Skip to content
Related Articles

Related Articles

Improve Article
Minimize the difference between the maximum and minimum values of the modified array
  • Difficulty Level : Easy
  • Last Updated : 19 May, 2021

Given an array A of n integers and integer X. You may choose any integer between -X\leq k\leq X  , and add k to A[i] for each 0\leq i \leq n-1  . The task is to find the smallest possible difference between the maximum value of A and the minimum value of A after updating array A.
Examples: 
 

Input: arr[] = {1, 3, 6}, x = 3
Output: 0
New array is [3, 3, 3] or [4, 4, 4].

Input: arr[] = {0, 10}, x = 2
Output: 6
New array is [2, 8] i.e add 2 to a[0] and subtract -2 from a[1].

 

Approach: Let A be the original array. Towards trying to minimize max(A) – min(A), let’s try to minimize max(A) and maximize min(A) separately.
The smallest possible value of max(A) is max(A) – K, as the value max(A) cannot go lower. Similarly, the largest possible value of min(A) is min(A) + K. So the quantity max(A) – min(A) is at least ans = (max(A) – K) – (min(A) + K).
We can attain this value, by the following modifications:
 

  • If A[i] <= min(A) + K, then A[i] = min(A) + K
  • Else, if A[i] >= max(A) – K, then A[i] = max(A) – K

If ans < 0, the best answer we could have is ans = 0, also using the same modification. 
 

Below is the implementation of above approach. 
 



CPP




// C++ program to find the minimum difference.
#include <bits/stdc++.h>
using namespace std;
 
// Function to return required minimum difference
int minDiff(int n, int x, int A[])
{
    int mn = A[0], mx = A[0];
 
    // finding minimum and maximum values
    for (int i = 0; i < n; ++i) {
        mn = min(mn, A[i]);
        mx = max(mx, A[i]);
    }
 
    // returning minimum possible difference
    return max(0, mx - mn - 2 * x);
}
 
// Driver program
int main()
{
 
    int n = 3, x = 3;
    int A[] = { 1, 3, 6 };
 
    // function to return the answer
    cout << minDiff(n, x, A);
 
    return 0;
}

Java




// Java program to find the minimum difference.
 
import java.util.*;
class GFG
{
     
    // Function to return required minimum difference
    static int minDiff(int n, int x, int A[])
    {
        int mn = A[0], mx = A[0];
     
        // finding minimum and maximum values
        for (int i = 0; i < n; ++i) {
            mn = Math.min(mn, A[i]);
            mx = Math.max(mx, A[i]);
        }
     
        // returning minimum possible difference
        return Math.max(0, mx - mn - 2 * x);
    }
     
    // Driver program
    public static void main(String []args)
    {
     
        int n = 3, x = 3;
        int A[] = { 1, 3, 6 };
     
        // function to return the answer
        System.out.println(minDiff(n, x, A));
     
         
    }
 
}
 
// This code is contributed by ihritik

Python3




# Python program to find the minimum difference.
 
     
# Function to return required minimum difference
def minDiff( n,  x,  A):
  
    mn =  A[0]
    mx =  A[0]
 
    # finding minimum and maximum values
    for i in range(0,n):
         mn = min( mn,  A[ i])
         mx = max( mx,  A[ i])
      
 
    # returning minimum possible difference
    return max(0,  mx -  mn - 2 *  x)
  
     
# Driver program
 
n = 3
x = 3
A = [1, 3, 6 ]
 
# function to return the answer
print(minDiff( n,  x,  A))
 
# This code is contributed by ihritik

C#




// C# program to find the minimum difference.
 
using System;
class GFG
{
     
    // Function to return required minimum difference
    static int minDiff(int n, int x, int []A)
    {
        int mn = A[0], mx = A[0];
     
        // finding minimum and maximum values
        for (int i = 0; i < n; ++i) {
            mn = Math.Min(mn, A[i]);
            mx = Math.Max(mx, A[i]);
        }
     
        // returning minimum possible difference
        return Math.Max(0, mx - mn - 2 * x);
    }
     
    // Driver program
    public static void Main()
    {
     
        int n = 3, x = 3;
        int []A = { 1, 3, 6 };
     
        // function to return the answer
        Console.WriteLine(minDiff(n, x, A));
            
    }
}
 
// This code is contributed by ihritik

PHP




<?php
 
// PHP program to find the minimum difference.
 
     
// Function to return required minimum difference
function minDiff($n, $x, $A)
{
    $mn = $A[0];
    $mx = $A[0];
 
    // finding minimum and maximum values
    for ($i = 0; $i < $n; ++$i) {
        $mn = min($mn, $A[$i]);
        $mx = max($mx, $A[$i]);
    }
 
    // returning minimum possible difference
    return max(0, $mx - $mn - 2 * $x);
}
     
// Driver program
 
$n = 3;
$x = 3;
$A = array( 1, 3, 6 );
 
// function to return the answer
echo minDiff($n, $x, $A);
 
// This code is contributed by ihritik
 
?>

Javascript




<script>
 
// JavaScript program to find the minimum difference.
 
// Function to return required minimum difference
function  minDiff( n,  x, A)
{
    var mn = A[0], mx = A[0];
 
    // finding minimum and maximum values
    for (var i = 0; i < n; ++i) {
        mn = Math.min(mn, A[i]);
        mx = Math.max(mx, A[i]);
    }
 
    // returning minimum possible difference
    return Math.max(0, mx - mn - 2 * x);
}
 
var n = 3, x = 3;
var A = [ 1, 3, 6 ];
 
// function to return the answer
document.write( minDiff(n, x, A));
 
// This code is contributed by SoumikMondal
 
</script>
Output: 
0

 

Time Complexity: O(n)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :