Related Articles
Minimize the difference between the maximum and minimum values of the modified array
• Difficulty Level : Easy
• Last Updated : 19 May, 2021

Given an array A of n integers and integer X. You may choose any integer between , and add k to A[i] for each . The task is to find the smallest possible difference between the maximum value of A and the minimum value of A after updating array A.
Examples:

Input: arr[] = {1, 3, 6}, x = 3
Output: 0
New array is [3, 3, 3] or [4, 4, 4].

Input: arr[] = {0, 10}, x = 2
Output: 6
New array is [2, 8] i.e add 2 to a[0] and subtract -2 from a[1].

Approach: Let A be the original array. Towards trying to minimize max(A) – min(A), let’s try to minimize max(A) and maximize min(A) separately.
The smallest possible value of max(A) is max(A) – K, as the value max(A) cannot go lower. Similarly, the largest possible value of min(A) is min(A) + K. So the quantity max(A) – min(A) is at least ans = (max(A) – K) – (min(A) + K).
We can attain this value, by the following modifications:

• If A[i] <= min(A) + K, then A[i] = min(A) + K
• Else, if A[i] >= max(A) – K, then A[i] = max(A) – K

If ans < 0, the best answer we could have is ans = 0, also using the same modification.

Below is the implementation of above approach.

## CPP

 // C++ program to find the minimum difference.#include using namespace std; // Function to return required minimum differenceint minDiff(int n, int x, int A[]){    int mn = A[0], mx = A[0];     // finding minimum and maximum values    for (int i = 0; i < n; ++i) {        mn = min(mn, A[i]);        mx = max(mx, A[i]);    }     // returning minimum possible difference    return max(0, mx - mn - 2 * x);} // Driver programint main(){     int n = 3, x = 3;    int A[] = { 1, 3, 6 };     // function to return the answer    cout << minDiff(n, x, A);     return 0;}

## Java

 // Java program to find the minimum difference. import java.util.*;class GFG{         // Function to return required minimum difference    static int minDiff(int n, int x, int A[])    {        int mn = A[0], mx = A[0];             // finding minimum and maximum values        for (int i = 0; i < n; ++i) {            mn = Math.min(mn, A[i]);            mx = Math.max(mx, A[i]);        }             // returning minimum possible difference        return Math.max(0, mx - mn - 2 * x);    }         // Driver program    public static void main(String []args)    {             int n = 3, x = 3;        int A[] = { 1, 3, 6 };             // function to return the answer        System.out.println(minDiff(n, x, A));                  } } // This code is contributed by ihritik

## Python3

 # Python program to find the minimum difference.      # Function to return required minimum differencedef minDiff( n,  x,  A):      mn =  A[0]    mx =  A[0]     # finding minimum and maximum values    for i in range(0,n):         mn = min( mn,  A[ i])         mx = max( mx,  A[ i])           # returning minimum possible difference    return max(0,  mx -  mn - 2 *  x)       # Driver program n = 3x = 3A = [1, 3, 6 ] # function to return the answerprint(minDiff( n,  x,  A)) # This code is contributed by ihritik

## C#

 // C# program to find the minimum difference. using System;class GFG{         // Function to return required minimum difference    static int minDiff(int n, int x, int []A)    {        int mn = A[0], mx = A[0];             // finding minimum and maximum values        for (int i = 0; i < n; ++i) {            mn = Math.Min(mn, A[i]);            mx = Math.Max(mx, A[i]);        }             // returning minimum possible difference        return Math.Max(0, mx - mn - 2 * x);    }         // Driver program    public static void Main()    {             int n = 3, x = 3;        int []A = { 1, 3, 6 };             // function to return the answer        Console.WriteLine(minDiff(n, x, A));                }} // This code is contributed by ihritik

## PHP

 

## Javascript

 
Output:
0

Time Complexity: O(n)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live

My Personal Notes arrow_drop_up