Minimize the difference between the maximum and minimum values of the modified array

Given an array A of n integers and and integer X. You may choose any integer between -X\leq k\leq X, and add k to A[i] for each 0\leq i \leq n-1. The task is to find the smallest possible difference between the maximum value of A and the minimum value of A after updating the array A.

Examples:

Input: arr[] = {1, 3, 6}, x = 3
Output: 0
New array is [3, 3, 3] or [4, 4, 4].

Input: arr[] = {0, 10}, x = 2
Output: 6
New array is [2, 8] i.e add 2 to a[0] and subtract -2 from a[1].

Approach: Let A be the original array. Towards trying to minimize max(A) – min(A), let’s try to minimize max(A) and maximize min(A) separately.

The smallest possible value of max(A) is max(A) – K, as the value max(A) cannot go lower. Similarly, the largest possible value of min(A) is min(A) + K. So the quantity max(A) – min(A) is at least ans = (max(A) – K) – (min(A) + K).

We can attain this value, by the following modifications:

  • If A[i] <= min(A) + K, then A[i] = min(A) + K
  • Else, if A[i] >= max(A) – K, then A[i] = max(A) – K

If ans < 0, the best answer we could have is ans = 0, also using the same modification.

Below is the implementation of above approach.

CPP

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the minimum difference.
#include <bits/stdc++.h>
using namespace std;
  
// Function to return required minimum difference
int minDiff(int n, int x, int A[])
{
    int mn = A[0], mx = A[0];
  
    // finding minimum and maximum values
    for (int i = 0; i < n; ++i) {
        mn = min(mn, A[i]);
        mx = max(mx, A[i]);
    }
  
    // returning minimum possible difference
    return max(0, mx - mn - 2 * x);
}
  
// Driver program
int main()
{
  
    int n = 3, x = 3;
    int A[] = { 1, 3, 6 };
  
    // function to return the answer
    cout << minDiff(n, x, A);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the minimum difference.
  
import java.util.*;
class GFG
{
      
    // Function to return required minimum difference
    static int minDiff(int n, int x, int A[])
    {
        int mn = A[0], mx = A[0];
      
        // finding minimum and maximum values
        for (int i = 0; i < n; ++i) {
            mn = Math.min(mn, A[i]);
            mx = Math.max(mx, A[i]);
        }
      
        // returning minimum possible difference
        return Math.max(0, mx - mn - 2 * x);
    }
      
    // Driver program
    public static void main(String []args)
    {
      
        int n = 3, x = 3;
        int A[] = { 1, 3, 6 };
      
        // function to return the answer
        System.out.println(minDiff(n, x, A));
      
          
    }
  
}
  
// This code is contributed by ihritik

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find the minimum difference.
  
      
# Function to return required minimum difference
def minDiff( n,  x,  A):
   
    mn =  A[0
    mx =  A[0
  
    # finding minimum and maximum values
    for i in range(0,n):
         mn = min( mn,  A[ i]) 
         mx = max( mx,  A[ i]) 
       
  
    # returning minimum possible difference
    return max(0,  mx -  mn - 2 *  x) 
   
      
# Driver program
  
n = 3 
x = 3 
A = [1, 3, 6
  
# function to return the answer
print(minDiff( n,  x,  A))
  
# This code is contributed by ihritik

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the minimum difference.
  
using System;
class GFG
{
      
    // Function to return required minimum difference
    static int minDiff(int n, int x, int []A)
    {
        int mn = A[0], mx = A[0];
      
        // finding minimum and maximum values
        for (int i = 0; i < n; ++i) {
            mn = Math.Min(mn, A[i]);
            mx = Math.Max(mx, A[i]);
        }
      
        // returning minimum possible difference
        return Math.Max(0, mx - mn - 2 * x);
    }
      
    // Driver program
    public static void Main()
    {
      
        int n = 3, x = 3;
        int []A = { 1, 3, 6 };
      
        // function to return the answer
        Console.WriteLine(minDiff(n, x, A));
             
    }
}
  
// This code is contributed by ihritik

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
  
// PHP program to find the minimum difference.
  
      
// Function to return required minimum difference
function minDiff($n, $x, $A)
{
    $mn = $A[0];
    $mx = $A[0];
  
    // finding minimum and maximum values
    for ($i = 0; $i < $n; ++$i) {
        $mn = min($mn, $A[$i]);
        $mx = max($mx, $A[$i]);
    }
  
    // returning minimum possible difference
    return max(0, $mx - $mn - 2 * $x);
}
      
// Driver program
  
$n = 3;
$x = 3;
$A = array( 1, 3, 6 );
  
// function to return the answer
echo minDiff($n, $x, $A);
  
// This code is contributed by ihritik
  
?>

chevron_right


Output:

0

Time Complexity: O(n)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : ihritik