Minimize replacements by previous or next alphabet required to make all characters of a string the same

Given a string S of length N consisting of lowercase alphabets, the task is to find the minimum number of operations required to make all the characters of the string S the same. In each operation, choose any character and replace it with its next or previous alphabet.

Note: The alphabets are considered to be cyclic i.e., Next character of z is considered to be a and previous character of a is considered to be z.

Examples:

Input: S = “abc”
Output: 2
Explanation:
To minimize the number of operation change all characters of the strings to ‘b’.
Operation 1: Change a to b.
Operation 2: Change c to b.

Input: S = “zzza”
Output: 1
Explanation:
To minimize the number of operation change all characters of the strings to ‘z’.
Operation 1: Change a to z.



Approach: To solve the problem, the idea is to calculate the cost of making all the characters equal to each alphabets, ‘a’ to ‘z’, one by one and print the minimum cost required for any of the conversions. Follow the steps below to solve the problem:

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
 
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to find the minimum count
// of operations to make all characters
// of the string same
int minCost(string s, int n)
{
 
    // Set min to some large value
    int minValue = 100000000;
 
    // Find minimum operations for
    // each character
    for (int i = 0; i <= 25; i++) {
 
        // Initialize cnt
        int cnt = 0;
 
        for (int j = 0; j < n; j++) {
 
            // Add the value to cnt
            cnt += min(abs(i - (s[j] - 'a')),
                       26 - abs(i - (s[j] - 'a')));
        }
 
        // Update minValue
        minValue = min(minValue, cnt);
    }
 
    // Return minValue
    return minValue;
}
 
// Driver Code
int main()
{
    // Given string str
    string str = "geeksforgeeks";
 
    int N = str.length();
 
    // Function Call
    cout << minCost(str, N);
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.io.*;
 
class GFG{
     
// Function to find the minimum count
// of operations to make all characters
// of the String same
static int minCost(String s, int n)
{
     
    // Set min to some large value
    int minValue = 100000000;
  
    // Find minimum operations for
    // each character
    for(int i = 0; i <= 25; i++)
    {
         
        // Initialize cnt
        int cnt = 0;
  
        for(int j = 0; j < n; j++)
        {
             
            // Add the value to cnt
            cnt += Math.min(Math.abs(i - (s.charAt(j) - 'a')),
                       26 - Math.abs(i - (s.charAt(j) - 'a')));
        }
  
        // Update minValue
        minValue = Math.min(minValue, cnt);
    }
  
    // Return minValue
    return minValue;
}
  
// Driver Code
public static void main (String[] args)
{
     
    // Given String str
    String str = "geeksforgeeks";
  
    int N = str.length();
  
    // Function call
    System.out.println(minCost(str, N));
}
}
 
// This code is contributed by sanjoy_62
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the
# above approach
 
# Function to find the minimum
# count of operations to make
# all characters of the string same
def minCost(s, n):
 
    # Set min to some
    # large value
    minValue = 100000000
 
    # Find minimum operations
    # for each character
    for i in range(26):
 
        # Initialize cnt
        cnt = 0
 
        for j in range(n):
 
            # Add the value to cnt
            cnt += min(abs(i - (ord(s[j]) -
                                ord('a'))),
                       26 - abs(i - (ord(s[j]) -
                                     ord('a'))))
 
        # Update minValue
        minValue = min(minValue, cnt)
 
    # Return minValue
    return minValue
 
# Driver Code
if __name__ == "__main__":
 
    # Given string str
    st = "geeksforgeeks"
 
    N = len(st)
 
    # Function Call
    print(minCost(st, N))
 
# This code is contributed by Chitranayal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
 
class GFG{
      
// Function to find the minimum count
// of operations to make all characters
// of the String same
static int minCost(string s, int n)
{
     
    // Set min to some large value
    int minValue = 100000000;
   
    // Find minimum operations for
    // each character
    for(int i = 0; i <= 25; i++)
    {
         
        // Initialize cnt
        int cnt = 0;
   
        for(int j = 0; j < n; j++)
        {
              
            // Add the value to cnt
            cnt += Math.Min(Math.Abs(i - (s[j] - 'a')),
                       26 - Math.Abs(i - (s[j] - 'a')));
        }
   
        // Update minValue
        minValue = Math.Min(minValue, cnt);
    }
   
    // Return minValue
    return minValue;
}
   
// Driver code
public static void Main()
{
     
    // Given String str
    string str = "geeksforgeeks";
   
    int N = str.Length;
   
    // Function call
    Console.WriteLine(minCost(str, N));
}
}
 
// This code is contributed by code_hunt
chevron_right

Output
60

Time Complexity: O(N * 26)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : sanjoy_62, code_hunt, chitranayal

Article Tags :
Practice Tags :