Related Articles

# Minimize maximum array element by splitting array elements into powers of two at most K times

• Last Updated : 24 Jun, 2021

Given an array arr[] consisting of N positive integers and an integer K, the task is to minimize the maximum value of the array by splitting the array element into powers of 2 at most K times.

Examples:

Input: arr[] = {2, 4, 11, 2}, K = 2
Output: 2
Explanation:
Below are the operations performed on array elements at most K(= 2) times:
Operation 1: Remove the element at index 2, i.e., arr = 11 and replace it with 11 numbers of 1s in it. Now the array arr[] modifies to {2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2}.
Operation 2: Remove the element at index 1, i.e., arr = 4 and replace it with 4 numbers of 1s in it. Now the array arr[] modifies to {2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2}.

After performing the above operations, the maximum value of the array is 2, which is minimum possible value.

Input: arr[]= {9}, K = 2
Output: 1

Approach: The given problem can be solved by using the fact that every number can be expressed the sum of 1 which is a power of 2. Follow the steps below to solve the problem:

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach` `#include ``using` `namespace` `std;` `// Function to find the minimum value``// of the maximum element of the array``// by splitting at most K array element``// into perfect powers of 2``void` `minimumSize(``int` `arr[], ``int` `N, ``int` `K)``{``    ``// Sort the array element in``    ``// the ascending order``    ``sort(arr, arr + N);` `    ``// Reverse the array``    ``reverse(arr, arr + N);` `    ``// If count of 0 is equal to N``    ``if` `(count(arr, arr + N, 0) == N)``        ``cout << 0;` `    ``// Otherwise, if K is greater``    ``// than or equal to N``    ``else` `if` `(K >= N)``        ``cout << 1 << endl;` `    ``// Otherwise``    ``else``        ``cout << arr[K] << endl;``}` `// Driver Code``int` `main()``{``    ``int` `arr[] = { 2, 4, 8, 2 };``    ``int` `K = 2;``    ``int` `N = ``sizeof``(arr) / ``sizeof``(arr);``    ``minimumSize(arr, N, K);` `    ``return` `0;``}`

## Java

 `// Java program for the above approach``import` `java.lang.*;``import` `java.util.*;` `class` `GFG{` `// Function to find the minimum value``// of the maximum element of the array``// by splitting at most K array element``// into perfect powers of 2``static` `void` `minimumSize(``int` `arr[], ``int` `N, ``int` `K)``{``    ` `    ``// Sort the array element in``    ``// the ascending order``    ``Arrays.sort(arr);` `    ``// Reverse the array``    ``reverse(arr);` `    ``// If count of 0 is equal to N``    ``if` `(count(arr, ``0``) == N)``        ``System.out.println(``0``);` `    ``// Otherwise, if K is greater``    ``// than or equal to N``    ``else` `if` `(K >= N)``        ``System.out.println(``1``);` `    ``// Otherwise``    ``else``        ``System.out.println(arr[K]);``}` `static` `void` `reverse(``int``[] a)``{``    ``int` `i, k, t;``    ``int` `n = a.length;``    ` `    ``for``(i = ``0``; i < n / ``2``; i++)``    ``{``        ``t = a[i];``        ``a[i] = a[n - i - ``1``];``        ``a[n - i - ``1``] = t;``    ``}``}` `static` `int` `count(``int``[] a, ``int` `n)``{``    ``int` `freq = ``0``;``    ` `    ``for``(``int` `i = ``0``; i < a.length; i++)``    ``{``        ``if` `(a[i] == n)``            ``freq++;``    ``}``    ``return` `freq;``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `arr[] = { ``2``, ``4``, ``8``, ``2` `};``    ``int` `K = ``2``;``    ``int` `N = arr.length;``    ` `    ``minimumSize(arr, N, K);``}``}` `// This code is contributed by offbeat`

## Python

 `# Python program for the above approach` `# Function to find the minimum value``# of the maximum element of the array``# by splitting at most K array element``# into perfect powers of 2``def` `minimumSize(arr, N, K):``  ` `    ``# Sort the array element in``    ``# the ascending order``    ``arr.sort()``    ` `    ``# Reverse the array``    ``arr.reverse()``    ` `    ``# If count of 0 is equal to N``    ``zero ``=` `arr.count(``0``)``    ``if` `zero ``=``=` `N:``        ``print``(``0``)``        ` `    ``# Otherwise, if K is greater``    ``# than or equal to N``    ``elif` `K >``=` `N:``        ``print``(``1``)``        ` `    ``# Otherwise``    ``else``:``        ``print``(arr[K])` `# Driver Code``arr ``=` `[``2``, ``4``, ``8``, ``2``]``K ``=` `2``N ``=` `len``(arr)``minimumSize(arr, N, K)` `# This code is contributed by sudhanshugupta2019a.`

## C#

 `// C#program for the above approach``using` `System;``class` `GFG``{` `    ``// Function to find the minimum value``    ``// of the maximum element of the array``    ``// by splitting at most K array element``    ``// into perfect powers of 2``    ``static` `void` `minimumSize(``int``[] arr, ``int` `N, ``int` `K)``    ``{` `        ``// Sort the array element in``        ``// the ascending order``        ``Array.Sort(arr);` `        ``// Reverse the array``        ``Array.Reverse(arr);` `        ``// If count of 0 is equal to N``        ``if` `(count(arr, 0) == N)``            ``Console.WriteLine(0);` `        ``// Otherwise, if K is greater``        ``// than or equal to N``        ``else` `if` `(K >= N)``            ``Console.WriteLine(1);` `        ``// Otherwise``        ``else``            ``Console.WriteLine(arr[K]);``    ``}` `    ``static` `void` `reverse(``int``[] a)``    ``{``        ``int` `i, t;``        ``int` `n = a.Length;` `        ``for` `(i = 0; i < n / 2; i++) {``            ``t = a[i];``            ``a[i] = a[n - i - 1];``            ``a[n - i - 1] = t;``        ``}``    ``}` `    ``static` `int` `count(``int``[] a, ``int` `n)``    ``{``        ``int` `freq = 0;` `        ``for` `(``int` `i = 0; i < a.Length; i++) {``            ``if` `(a[i] == n)``                ``freq++;``        ``}``        ``return` `freq;``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main(``string``[] args)``    ``{``        ``int``[] arr = { 2, 4, 8, 2 };``        ``int` `K = 2;``        ``int` `N = arr.Length;` `        ``minimumSize(arr, N, K);``    ``}``}` `// This code is contributed by ukasp.`

## Javascript

 ``
Output:
`2`

Time Complexity: O(N * log N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up