Minimize (max(A[i], B[j], C[k]) – min(A[i], B[j], C[k])) of three different sorted arrays

• Difficulty Level : Medium
• Last Updated : 28 May, 2021

Given three sorted arrays A, B, and C of not necessarily same sizes. Calculate the minimum absolute difference between the maximum and minimum number of any triplet A[i], B[j], C[k] such that they belong to arrays A, B and C respectively, i.e., minimize (max(A[i], B[j], C[k]) – min(A[i], B[j], C[k]))
Examples:

Input : A : [ 1, 4, 5, 8, 10 ]
B : [ 6, 9, 15 ]
C : [ 2, 3, 6, 6 ]
Output : 1
Explanation: When we select A[i] = 5
B[j] = 6, C[k] = 6, we get the minimum difference
as max(A[i], B[j], C[k]) - min(A[i], B[j], C[k]))
= |6-5| = 1

Input : A = [ 5, 8, 10, 15 ]
B = [ 6, 9, 15, 78, 89 ]
C = [ 2, 3, 6, 6, 8, 8, 10 ]
Output : 1
Explanation: When we select A[i] = 10
b[j] = 9, C[k] = 10.

Start with the largest elements in each of the arrays A, B & C. Maintain a variable to update the answer during each of the steps to be followed.
In every step, the only possible way to decrease the difference is to decrease the maximum element out of the three elements.
So traverse to the next largest element in the array containing the maximum element for this step and update the answer variable.
Repeat this step until the array containing the maximum element ends.

C++

 // C++ code for above approach#includeusing namespace std; int solve(int A[], int B[], int C[], int i, int j, int k){        int min_diff, current_diff, max_term;         // calculating min difference from last        // index of lists        min_diff = Integer.MAX_VALUE;         while (i != -1 && j != -1 && k != -1)        {            current_diff = abs(max(A[i], max(B[j], C[k]))                            - min(A[i], min(B[j], C[k])));             // checking condition            if (current_diff < min_diff)                min_diff = current_diff;             // calculating max term from list            max_term = max(A[i], max(B[j], C[k]));             // Moving to smaller value in the            // array with maximum out of three.            if (A[i] == max_term)                i -= 1;            else if (B[j] == max_term)                j -= 1;            else                k -= 1;        }                 return min_diff;    }     // Driver code    int main()    {        int D[] = { 5, 8, 10, 15 };        int E[] = { 6, 9, 15, 78, 89 };        int F[] = { 2, 3, 6, 6, 8, 8, 10 };        int nD = sizeof(D) / sizeof(D);        int nE = sizeof(E) / sizeof(E);        int nF = sizeof(F) / sizeof(F);        cout << solve(D, E, F, nD-1, nE-1, nF-1);                 return 0;    } // This code is contributed by Ravi Maurya.

Java

 // Java code for above approachimport java.util.*; class GFG{    static int solve(int[] A, int[] B, int[] C)    {        int i, j, k;                 // assigning the length -1 value        // to each of three variables        i = A.length - 1;        j = B.length - 1;        k = C.length - 1;                 int min_diff, current_diff, max_term;         // calculating min difference        // from last index of lists        min_diff = Math.abs(Math.max(A[i], Math.max(B[j], C[k]))                - Math.min(A[i], Math.min(B[j], C[k])));         while (i != -1 && j != -1 && k != -1)        {            current_diff = Math.abs(Math.max(A[i], Math.max(B[j], C[k]))                        - Math.min(A[i], Math.min(B[j], C[k])));             // checking condition            if (current_diff < min_diff)                min_diff = current_diff;             // calculating max term from list            max_term = Math.max(A[i], Math.max(B[j], C[k]));             // Moving to smaller value in the            // array with maximum out of three.            if (A[i] == max_term)                i -= 1;            else if (B[j] == max_term)                j -= 1;            else                k -= 1;        }        return min_diff;    }     // Driver code    public static void main(String []args)    {            int[] D = { 5, 8, 10, 15 };        int[] E = { 6, 9, 15, 78, 89 };        int[] F = { 2, 3, 6, 6, 8, 8, 10 };        System.out.println(solve(D, E, F));             }} // This code is contributed by rutvik_56.

Python3

 # python code for above approach. def solve(A, B, C):         # assigning the length -1 value        # to each of three variables        i = len(A) - 1        j = len(B) - 1        k = len(C) - 1         # calculating min difference        # from last index of lists        min_diff = abs(max(A[i], B[j], C[k]) -        min(A[i], B[j], C[k]))         while i != -1 and j != -1 and k != -1:            current_diff = abs(max(A[i], B[j],            C[k]) - min(A[i], B[j], C[k]))             # checking condition            if current_diff < min_diff:                min_diff = current_diff             # calculating max term from list            max_term = max(A[i], B[j], C[k])             # Moving to smaller value in the            # array with maximum out of three.            if A[i] == max_term:                i -= 1            elif B[j] == max_term:                j -= 1            else:                k -= 1        return min_diff # driver code A = [ 5, 8, 10, 15 ]B = [ 6, 9, 15, 78, 89 ]C = [ 2, 3, 6, 6, 8, 8, 10 ]print(solve(A, B, C))

C#

 // C# code for above approachusing System; class GFG{    static int solve(int[] A, int[] B, int[] C)    {        int i, j, k;                 // assigning the length -1 value        // to each of three variables        i = A.Length - 1;        j = B.Length - 1;        k = C.Length - 1;                 int min_diff, current_diff, max_term;         // calculating min difference        // from last index of lists        min_diff = Math.Abs(Math.Max(A[i], Math.Max(B[j], C[k]))                - Math.Min(A[i], Math.Min(B[j], C[k])));         while (i != -1 && j != -1 && k != -1)        {            current_diff = Math.Abs(Math.Max(A[i], Math.Max(B[j], C[k]))                        - Math.Min(A[i], Math.Min(B[j], C[k])));             // checking condition            if (current_diff < min_diff)                min_diff = current_diff;             // calculating max term from list            max_term = Math.Max(A[i], Math.Max(B[j], C[k]));             // Moving to smaller value in the            // array with maximum out of three.            if (A[i] == max_term)                i -= 1;            else if (B[j] == max_term)                j -= 1;            else                k -= 1;        }        return min_diff;    }     // Driver code    public static void Main()    {            int[] D = { 5, 8, 10, 15 };        int[] E = { 6, 9, 15, 78, 89 };        int[] F = { 2, 3, 6, 6, 8, 8, 10 };        Console.WriteLine(solve(D, E, F));             }}// This code is contributed by vt_m



Javascript



Output:

1

My Personal Notes arrow_drop_up