Minimize K whose XOR with given array elements leaves array unchanged

Given an array of N elements, the task is to find the minimum value of K such that Bitwise XOR of K with all array elements produces the same set of elements. If it is impossible to find any value of K then print “-1”.

Examples:

Input: arr[] = { 1, 0, 2, 3}
Output: 1
Explanation:
For K = 1,
1 xor 1 = 1
1 xor 0 = 0
1 xor 2 = 2
1 xor 3 = 3
Thus, K = 1 is the least possible positive value which leaves the array unaltered.

Input: arr[] = { 7, 1, 2, 3, 8}
Output: -1

Naive Approach: The naive approach is to iterate for all the possible value of K in the range [1, 1024] and check if Bitwise XOR of K with all the elements in the array gives the same array elements or not. If for any minimum value of K the Bitwise XOR produces the same array then print that value of K else print “-1”.



Time Complexity: O(K*N2)
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized by using additional space. Below are the steps:

  1. Insert all the elements into the set.
  2. Iterate for all possible value of K in the range [0, 1024].
  3. For every element in set, find its Bitwise XOR with K.
  4. The first value of K for which all the elements generated after Bitwise XOR with the element in set is same as that of the given set, then print the value of K.
  5. If no such K is obtained, print “-1”.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the minimum
// value of K in given range
int min_value(int arr[], int N)
{
    int x, X, K;
  
    // Declare a set
    set<int> S;
  
    for (int i = 0; i < N; i++) {
        S.insert(arr[i]);
    }
  
    // Initialize count variable
    int count = 0;
  
    // Iterate in range [1, 1024]
    for (int i = 1; i <= 1024; i++) {
  
        // counter set as 0
        count = 0;
  
        // Iterating through the Set
        for (auto it = S.begin();
             it != S.end(); it++)
  
        // Check if the XOR
        // calculated is present
        // in the Set
        {
  
            X = ((i | *it) - (i & *it));
  
            // If the value of Bitwise XOR
            // inside the given set then
            // increment count
            if (S.find(X) != S.end()) {
                count++;
            }
        }
  
        // Check if the value of count is
        // equal to the size of set
        if (count == S.size()) {
            K = i;
  
            // Return minimum value of K
            return K;
        }
    }
  
    // If no such K is found
    return -1;
}
  
// Driver Code
int main()
{
    // Given array
    int arr[] = { 1, 0, 3, 3, 0, 2 };
  
    int N = sizeof(arr) / sizeof(arr[0]);
  
    // Function Call
    cout << min_value(arr, N);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
  
class GFG{
  
// Function to find the minimum
// value of K in given range
static int min_value(int arr[], int N)
{
    int x, X, K;
  
    // Declare a set
    HashSet<Integer> S = new HashSet<Integer>();
  
    for(int i = 0; i < N; i++)
    {
        S.add(arr[i]);
    }
  
    // Initialize count variable
    int count = 0;
  
    // Iterate in range [1, 1024]
    for(int i = 1; i <= 1024; i++)
    {
          
        // counter set as 0
        count = 0;
  
        // Iterating through the Set
        for(int it : S)
        {
              
            // Check if the XOR
            // calculated is present
            // in the Set
            X = ((i | it) - (i & it));
  
            // If the value of Bitwise XOR
            // inside the given set then
            // increment count
            if (S.contains(X))
            {
                count++;
            }
        }
  
        // Check if the value of count is
        // equal to the size of set
        if (count == S.size()) 
        {
            K = i;
  
            // Return minimum value of K
            return K;
        }
    }
  
    // If no such K is found
    return -1;
}
  
// Driver Code
public static void main(String[] args)
{
      
    // Given array
    int arr[] = { 1, 0, 3, 3, 0, 2 };
  
    int N = arr.length;
  
    // Function Call
    System.out.print(min_value(arr, N));
}
}
  
// This code is contributed by Rajput-Ji

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
  
# Function to find the minimum
# value of K in given range
def min_value(arr, N):
      
    x, X, K = 0, 0, 0
      
    # Declare a set
    S = set()
      
    for i in range(N):
        S.add(arr[i])
          
    # Initialize count variable
    count = 0
      
    # Iterate in range [1, 1024]
    for i in range(1, 1024):
          
        # counter set as 0
        count = 0
          
        # Iterating through the Set
        for it in S:
              
            # Check if the XOR
            # calculated is present
            # in the Set
            X = ((i | it) - (i & it))
              
            # If the value of Bitwise XOR
            # inside the given set then
            # increment count
            if X in S:
                count += 1
                  
        # Check if the value of count is
        # equal to the size of set
        if (count == len(S)):
            K = i
              
            # Return minimum value of K
            return K
      
    # If no such K is found
    return -1
      
# Driver Code
  
# Given array
arr = [ 1, 0, 3, 3, 0, 2 ]
  
N = len(arr)
  
# Function Call
print(min_value(arr, N))
  
# This code is contributed by shubhamsingh10

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach 
using System;
using System.Collections.Generic;
  
class GFG{
      
// Function to find the minimum 
// value of K in given range 
static int min_value(int[] arr, int N) 
    //int x;
    int X, K; 
  
    // Declare a set 
    HashSet<int> S = new HashSet<int>(); 
  
    for(int i = 0; i < N; i++) 
    
        S.Add(arr[i]); 
    
  
    // Initialize count variable 
    int count = 0; 
  
    // Iterate in range [1, 1024] 
    for(int i = 1; i <= 1024; i++)
    
          
        // counter set as 0 
        count = 0; 
  
        // Iterating through the Set 
        foreach(int it in S) 
        
              
            // Check if the XOR 
            // calculated is present 
            // in the Set 
            X = ((i | it) - (i & it)); 
  
            // If the value of Bitwise XOR 
            // inside the given set then 
            // increment count 
            if (S.Contains(X))
            
                count++; 
            
        
  
        // Check if the value of count is 
        // equal to the size of set 
        if (count == S.Count) 
        
            K = i; 
  
            // Return minimum value of K 
            return K; 
        
    
  
    // If no such K is found 
    return -1; 
}
  
// Driver code
static void Main() 
{
      
    // Given array 
    int[] arr = { 1, 0, 3, 3, 0, 2 }; 
  
    int N = arr.Length; 
  
    // Function call 
    Console.Write(min_value(arr, N));
}
}
  
// This code is contributed by divyeshrabadiya07

chevron_right


Output:

1

Time Complexity: O(K*N*log2N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up


If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.