Minimize flips required to make all shortest paths from top-left to bottom-right of a binary matrix equal to S

Given a binary matrix mat[][] having dimensions N * M and a binary string S of length N + M – 1 , the task is to find the minimum number of flips required to make all shortest paths from the top-left cell to the bottom-right cell equal to the given string S.

Examples:

Input: mat[][] = [[1, 0, 1, 1], [1, 1, 1, 0]], S = “10010”
Output:
Explanation: 
Step 1: [[1, 0, 1, 1], [1, 1, 1, 0]] -> [[1, 0, 1, 1], [0, 1, 1, 0]] 
Step 2: [[1, 0, 1, 1], [0, 1, 1, 0]] -> [[1, 0, 0, 1], [0, 1, 1, 0]] 
Step 3: [[1, 0, 0, 1], [0, 1, 1, 0]] -> [[1, 0, 0, 1], [0, 0, 1, 0]] 
Once the above steps are performed, every shortest path from the top-left to bottom-right cell are equal to S. 
Therefore, the required count is 3.

Input: mat[][] = [[1, 0, 0, 1, 0]], S = “01101”
Output: 5

Naive Approach: The simplest approach is to generate all possible flips in each cell of the given matrix recursively and check which combination of the minimum flips generates the matrix satisfying the required condition. 



Time Complexity: O(2N * M)
Auxiliary Space: O(N * M)

Efficient Approach: To optimize the above approach, the idea is to traverse the matrix and observe that if (i, j) is the current index of the given matrix then, this position will be in the shortest path string at index (i + j) where, i ∈ [0, N-1] and j ∈ [0, M-1]

Follow the steps below to solve the problem:

  1. Initialize the counter as 0.
  2. Traverse through each position of the matrix arr[][].
  3. If the current position in the given matrix is (i, j) then, this position is in the shortest path string at (i + j)thindex.
  4. At each position, compare arr[i][j] and S[i + j]. If found to be equal, continue to the next position. Otherwise, increase the count by 1.
  5. Once the above steps are performed for the entire matrix, print the value of count as the minimum flips required.

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to count the minimum
// number of flips required
int minFlips(vector<vector<int> >& mat,
             string s)
{
    // Dimensions of matrix
    int N = mat.size();
    int M = mat[0].size();
  
    // Stores the count the flips
    int count = 0;
  
    for (int i = 0; i < N; i++) {
  
        for (int j = 0; j < M; j++) {
  
            // Check if element is same
            // or not
            if (mat[i][j]
                != s[i + j] - '0') {
                count++;
            }
        }
    }
  
    // Return the final count
    return count;
}
  
// Driver Code
int main()
{
    // Given Matrix
    vector<vector<int> > mat
        = { { 1, 0, 1 },
            { 0, 1, 1 },
            { 0, 0, 0 } };
  
    // Given path as a string
    string s = "10001";
  
    // Function Call
    cout << minFlips(mat, s);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
class GFG {
  
    // Function to count the minimum
    // number of flips required
    static int minFlips(int mat[][], 
                        String s)
    {
        // Dimensions of matrix
        int N = mat.length;
        int M = mat[0].length;
  
        // Stores the count the flips
        int count = 0;
  
        for (int i = 0; i < N; i++) 
        {
            for (int j = 0; j < M; j++) 
            {
                // Check if element is same
                // or not
                if (mat[i][j] != 
                    s.charAt(i + j) - '0'
                {
                    count++;
                }
            }
        }
  
        // Return the final count
        return count;
    }
  
    // Driver Code
    public static void main(String[] args)
    {
        // Given Matrix
        int mat[][] = {{1, 0, 1}, 
                       {0, 1, 1}, {0, 0, 0}};
  
        // Given path as a string
        String s = "10001";
  
        // Function Call
        System.out.print(minFlips(mat, s));
    }
}
  
// This code is contributed by Chitranayal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach 
  
# Function to count the minimum
# number of flips required 
def minFlips(mat, s):
  
    # Dimensions of matrix
    N = len(mat)
    M = len(mat[0])
  
    # Stores the count the flips
    count = 0
  
    for i in range(N):
        for j in range(M):
  
            # Check if element is same
            # or not
            if(mat[i][j] != ord(s[i + j]) -
                            ord('0')):
                count += 1
  
    # Return the final count
    return count
  
# Driver Code
  
# Given Matrix
mat = [ [ 1, 0, 1 ],
        [ 0, 1, 1 ],
        [ 0, 0, 0 ] ]
  
# Given path as a string
s = "10001"
  
# Function call
print(minFlips(mat, s))
  
# This code is contributed by Shivam Singh
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
  
class GFG{
  
// Function to count the minimum
// number of flips required
static int minFlips(int [,]mat, 
                    String s)
{
      
    // Dimensions of matrix
    int N = mat.GetLength(0);
    int M = mat.GetLength(1);
  
    // Stores the count the flips
    int count = 0;
  
    for(int i = 0; i < N; i++) 
    {
        for(int j = 0; j < M; j++) 
        {
              
            // Check if element is same
            // or not
            if (mat[i, j] != 
                  s[i + j] - '0'
            {
                count++;
            }
        }
    }
  
    // Return the readonly count
    return count;
}
  
// Driver Code
public static void Main(String[] args)
{
      
    // Given Matrix
    int [,]mat = { { 1, 0, 1 }, 
                   { 0, 1, 1 },
                   { 0, 0, 0 } };
  
    // Given path as a string
    String s = "10001";
  
    // Function call
    Console.Write(minFlips(mat, s));
}
}
  
// This code is contributed by Amit Katiyar
chevron_right

Output: 
4

Time Complexity: O(N * M)
Auxiliary Space: O(N * M)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :