Given an array A[] consisting of positive integers, the task is to calculate the minimum possible deviation of the given arrayA[] after performing the following operations any number of times:
The deviation of the array A[] is the difference between the maximum and minimum element present in the array A[].
Examples:
Input: A[] = {4, 1, 5, 20, 3}
Output: 3
Explanation: Array modifies to {4, 2, 5, 5, 3} after performing given operations. Therefore, deviation = 5 – 2 = 3.
Input: A[] = {1, 2, 3, 4}
Output: 1
Explanation: Array modifies to after two operations to {2, 2, 3, 2}. Therefore, deviation = 3 – 2 = 1.
Approach: The problem can be solved based on the following observations:
- Even numbers can be divided multiple times until it converts to an odd number.
- Odd numbers can be doubled only once as it converts to an even number.
- Therefore, even numbers can never be increased.
Follow the steps below to solve the problem:
Below is the implementation of above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void minimumDeviation( int A[], int N)
{
set< int > s;
for ( int i = 0; i < N; i++) {
if (A[i] % 2 == 0)
s.insert(A[i]);
else
s.insert(2 * A[i]);
}
int diff = *s.rbegin() - *s.begin();
while (( int )s.size()
&& *s.rbegin() % 2 == 0) {
int maxEl = *s.rbegin();
s.erase(maxEl);
s.insert(maxEl / 2);
diff = min(diff, *s.rbegin() - *s.begin());
}
cout << diff;
}
int main()
{
int A[] = { 4, 1, 5, 20, 3 };
int N = sizeof (A) / sizeof (A[0]);
minimumDeviation(A, N);
return 0;
}
|
Java
import java.io.*;
import java.util.*;
class GFG
{
static void minimumDeviation( int A[], int N)
{
TreeSet<Integer> s = new TreeSet<Integer>();
for ( int i = 0 ; i < N; i++)
{
if (A[i] % 2 == 0 )
s.add(A[i]);
else
s.add( 2 * A[i]);
}
int diff = s.last() - s.first() ;
while ((s.last() % 2 == 0 ))
{
int maxEl = s.last();
s.remove(maxEl);
s.add(maxEl / 2 );
diff = Math.min(diff, s.last() - s.first());
}
System.out.print(diff);
}
public static void main(String[] args)
{
int A[] = { 4 , 1 , 5 , 20 , 3 };
int N = A.length;
minimumDeviation(A, N);
}
}
|
Python3
def minimumDeviation(A, N):
s = set ([])
for i in range (N):
if (A[i] % 2 = = 0 ):
s.add(A[i])
else :
s.add( 2 * A[i])
s = list (s)
diff = s[ - 1 ] - s[ 0 ]
while ( len (s) and s[ - 1 ] % 2 = = 0 ):
maxEl = s[ - 1 ]
s.remove(maxEl)
s.append(maxEl / / 2 )
diff = min (diff, s[ - 1 ] - s[ 0 ])
print (diff)
if __name__ = = "__main__" :
A = [ 4 , 1 , 5 , 20 , 3 ]
N = len (A)
minimumDeviation(A, N)
|
C#
using System;
using System.Collections.Generic;
using System.Linq;
class GFG
{
static void minimumDeviation( int [] A, int N)
{
HashSet< int > s = new HashSet< int >();
for ( int i = 0; i < N; i++)
{
if (A[i] % 2 == 0)
s.Add(A[i]);
else
s.Add(2 * A[i]);
}
List< int > S = s.ToList();
S.Sort();
int diff = S[S.Count - 1] - S[0];
while (( int )S.Count != 0 && S[S.Count - 1] % 2 == 0) {
int maxEl = S[S.Count - 1];
S.RemoveAt(S.Count - 1);
S.Add(maxEl / 2);
S.Sort();
diff = Math.Min(diff, S[S.Count - 1] - S[0]);
}
Console.Write(diff);
}
static void Main()
{
int [] A = { 4, 1, 5, 20, 3 };
int N = A.Length;
minimumDeviation(A, N);
}
}
|
Javascript
<script>
function minimumDeviation(A, N)
{
var s = new Set();
for ( var i = 0; i < N; i++) {
if (A[i] % 2 == 0)
s.add(A[i]);
else
s.add(2 * A[i]);
}
var tmp = [...s].sort((a,b)=>a-b);
var diff = tmp[tmp.length-1] - tmp[0];
while (s.size
&& tmp[tmp.length-1] % 2 == 0) {
var maxEl = tmp[tmp.length-1];
s. delete (maxEl);
s.add(parseInt(maxEl / 2));
tmp = [...s].sort((a,b)=>a-b);
diff = Math.min(diff, tmp[tmp.length-1] - tmp[0]);
}
document.write( diff);
}
var A = [4, 1, 5, 20, 3];
var N = A.length;
minimumDeviation(A, N);
</script>
|
Time Complexity : O(N * log(N))
Auxiliary Space : O(N)