Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Minimize deletions in Array by deleting all occurrences of any number such that array size is reduced to at least half

  • Difficulty Level : Medium
  • Last Updated : 10 Nov, 2021

Given an array arr[] of positive integers, the task is to select an element from the array and delete all its occurrences, such that the number of elements selected are minimum and the array size becomes atleast half of its original size.
Note: Size of the given array is always even.

Example:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {2, 2, 2, 2, 4, 4, 6, 7, 7, 3, 3, 3}
Output: 2
Explanation: First we select 2 and delete all its occurences after that arr[] becomes – {4, 4, 6, 7, 7, 3, 3, 3} with size = 8. As the size is still greater than half, we select 3 and delete all its occurences, after that arr[] becomes – {4, 4, 6, 7, 7} with size = 5.



Input: arr[] = {3, 3, 3, 3, 3}
Output: 1
Explanation : select 3 and remove all its occurences.

 

Approach: The task can be easily achieved by removing the elements with maximum frequency, as soon as the array size becomes at least half of the actual size, we return the number of unique elements deleted till now.

Follow the steps to solve the problem:

  • Use Hash-map to store frequency of the elements in array present.
  • Store the frequencies in a list.
  • Sort the list and traverse it from the back.
  • Select the largest frequency element and decrement it from the array size and increment the count of unique elements deleted.
  • If new array size becomes at-least half of the original array size, return the number of unique elements till now.

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
 
    // Function to calculate the minimum
    // elements removed
     int reduceArrSize(int arr[],int n)
    {
        unordered_map<int,int> hm;
 
        // Making frequency map of elements
        for (int i = 0; i < n; i++) {
            hm[arr[i]]++;
        }
 
        // Storing frequencies in a list
        vector<int> freq;
 
        for(auto it = hm.begin(); it != hm.end(); it++)
        {
            freq.push_back(it->second);
        }
 
        // Sorting the list
        sort(freq.begin(), freq.end());
 
        int size = n;
        int idx = freq.size() - 1;
        int count = 0;
 
        // Counting number of elements to be deleted
        while (size > n/ 2) {
            size -= arr[idx--];
            count++;
        }
        return count;
    }
 
    // Driver Code
    int main()
    {
        int arr[] = { 2, 2, 2, 2, 4, 4,
                      6, 7, 7, 3, 3, 3 };
        int n = sizeof(arr)/sizeof(arr[0]);
        int count = reduceArrSize(arr, n);
        cout<<(count);
        return 0;
    }
 
// This code is contributed by Potta Lokesh

Java




// Java program for the above approach
import java.util.*;
 
class GFG {
 
    // Function to calculate the minimum
    // elements removed
    public static int reduceArrSize(int[] arr)
    {
        HashMap<Integer, Integer> hm = new HashMap<>();
 
        // Making frequency map of elements
        for (int i = 0; i < arr.length; i++) {
            hm.put(arr[i], hm.getOrDefault(arr[i], 0) + 1);
        }
 
        // Storing frequencies in a list
        ArrayList<Integer> freq
            = new ArrayList<Integer>(hm.values());
 
        // Sorting the list
        Collections.sort(freq);
 
        int size = arr.length;
        int idx = freq.size() - 1;
        int count = 0;
 
        // Counting number of elements to be deleted
        while (size > arr.length / 2) {
            size -= arr[idx--];
            count++;
        }
        return count;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] arr = { 2, 2, 2, 2, 4, 4,
                      6, 7, 7, 3, 3, 3 };
        int count = reduceArrSize(arr);
        System.out.println(count);
    }
}

Python3




# python 3 Program to implement
# the above approach
 
# Function to calculate the minimum
# elements removed
def reduceArrSize(arr,n):
    hm = {}
 
    # Making frequency map of elements
    for i in range(n):
        if arr[i] in hm:
            hm[arr[i]] += 1
        else:
            hm[arr[i]] = 1
 
    # Storing frequencies in a list
    freq = []
 
    for key,value in hm.items():
        freq.append(value)
 
    # Sorting the list
    freq.sort()
 
    size = n
    idx = len(freq) - 1
    count = 0
 
    # Counting number of elements to be deleted
    while (size > n// 2):
        size -= arr[idx]
        idx -= 1
        count += 1
    return count
 
# Driver Code
if __name__ == '__main__':
    arr = [2, 2, 2, 2, 4, 4,6, 7, 7, 3, 3, 3]
    n = len(arr)
    count = reduceArrSize(arr, n)
    print(count)
     
    # This code is contributed by SURENDRA_GANGWAR.

C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG {
 
    // Function to calculate the minimum
    // elements removed
    public static int reduceArrSize(int[] arr)
    {
        Dictionary<int, int> hm = new Dictionary<int, int>();
 
        // Making frequency map of elements
        for (int i = 0; i < arr.Length; i++) {
            if(hm.ContainsKey(arr[i])){
                hm[arr[i]] = hm[arr[i]]+1;
            }
            else{
                hm.Add(arr[i], 1);
            }
        }
 
        // Storing frequencies in a list
        List<int> freq
            = new List<int>(hm.Values);
 
        // Sorting the list
        freq.Sort();
 
        int size = arr.Length;
        int idx = freq.Count - 1;
        int count = 0;
 
        // Counting number of elements to be deleted
        while (size > arr.Length / 2) {
            size -= arr[idx--];
            count++;
        }
        return count;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int[] arr = { 2, 2, 2, 2, 4, 4,
                      6, 7, 7, 3, 3, 3 };
        int count = reduceArrSize(arr);
        Console.WriteLine(count);
    }
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// Javascript program for the above approach
// Function to calculate the minimum
// elements removed
function reduceArrSize(arr)
{
    var hm = new Map();
     
    // Making frequency map of elements
    for (var i = 0; i < arr.length; i++) {
        if(hm.has(arr[i])){
            hm.set(arr[i], hm.get(arr[i])+1);
        }
        else{
            hm.set(arr[i], 1);
        }
    }
     
    // Storing frequencies in a list
    var freq =[ ...hm.values()];
     
    // Sorting the list
    freq.sort();
     
    var size = arr.length;
    var idx = freq.length - 1;
    var count = 0;
     
    // Counting number of elements to be deleted
    while (size > arr.length / 2) {
        size -= arr[idx--];
        count++;
    }
    return count;
}
 
// Driver Code
var arr = [2, 2, 2, 2, 4, 4,
              6, 7, 7, 3, 3, 3];
var count = reduceArrSize(arr);
document.write(count);
 
// This code is contributed by rutvik_56.
</script>

 
 

Output: 
2

 

 

Time Complexity: O(N*logN), sorting the frequency list
Auxiliary Space: O(N), hashmap to store the frequencies

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :