Minimize count of Subsets with difference between maximum and minimum element not exceeding K

Given an array arr[ ] and an integer K, the task is to split the given array into minimum number of subsets having the difference between the maximum and the minimum element ≤ K.

Examples:

Input: arr[ ] = {1, 3, 7, 9, 10}, K = 3
Output: 2
Explanation:
One of the possible subsets of arr[] are {1, 3} and {7, 9, 10} where the difference between maximum and minimum element does not greater than K i.e, 3.

Input: arr[ ] = {1, 10, 8, 3, 9}, K =3
Output: 2.

Approach: Follow the steps below to solve the problem:



  1. Sort the array in ascending order.
  2. Iterate over the array, setting currMin as the first element of the array and keep updating currMax with the elements traversed.
  3. If at any index, the difference between currMax and currMin exceeds K, increment answer by 1 and set currMax and currMin to arr[i].
  4. Finally, return answer.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum count
// of subsets of required type
int findCount(int arr[], int N, int K)
{
    sort(arr, arr + N);
 
    // Stores the result
    int result = 1;
 
    // Store the maximum and minimum
      // element of the current subset
    int cur_max = arr[0];
    int cur_min = arr[0];
   
    for (int i = 1; i < N; i++) {
       
        // Update current maximum
        cur_max = arr[i];
       
        // If difference exceeds K
        if (cur_max - cur_min > K) {
           
            // Update count
            result++;
 
            // Update maximum and minimum
            // to the current subset
            cur_max = arr[i];
            cur_min = arr[i];
        }
    }
   
    return result;
}
 
// Driver Code
int main()
{
    int arr[] = { 1,10, 8, 3, 9 };
    int K = 3;
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << findCount(arr, N, K);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// above approach
import java.util.*;
 
class GFG{
 
// Function to find the minimum count
// of subsets of required type
static int findCount(int arr[], int N, int K)
{
    Arrays.sort(arr);
 
    // Stores the result
    int result = 1;
 
    // Store the maximum and minimum
    // element of the current subset
    int cur_max = arr[0];
    int cur_min = arr[0];
 
    for(int i = 1; i < N; i++)
    {
         
        // Update current maximum
        cur_max = arr[i];
     
        // If difference exceeds K
        if (cur_max - cur_min > K)
        {
         
            // Update count
            result++;
 
            // Update maximum and minimum
            // to the current subset
            cur_max = arr[i];
            cur_min = arr[i];
        }
    }
    return result;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 1, 10, 8, 3, 9 };
    int K = 3;
    int N = arr.length;
     
    System.out.print(findCount(arr, N, K));
}
}
 
// This code is contributed by amal kumar choubey

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
 
# Function to find the minimum count
# of subsets of required type
def findCount(arr, N, K):
 
    arr.sort()
 
    # Stores the result
    result = 1
 
    # Store the maximum and minimum
    # element of the current subset
    cur_max = arr[0]
    cur_min = arr[0]
 
    for i in range(1, N):
 
        # Update current maximum
        cur_max = arr[i]
 
        # If difference exceeds K
        if(cur_max - cur_min > K):
 
            # Update count
            result += 1
 
            # Update maximum and minimum
            # to the current subset
            cur_max = arr[i]
            cur_min = arr[i]
 
    return result
 
# Driver Code
arr = [ 1, 10, 8, 3, 9 ]
K = 3
N = len(arr)
 
# Function call
print(findCount(arr, N, K))
 
# This code is contributed by Shivam Singh

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// above approach
using System;
class GFG{
 
// Function to find the minimum count
// of subsets of required type
static int findCount(int []arr,
                     int N, int K)
{
    Array.Sort(arr);
 
    // Stores the result
    int result = 1;
 
    // Store the maximum and minimum
    // element of the current subset
    int cur_max = arr[0];
    int cur_min = arr[0];
 
    for(int i = 1; i < N; i++)
    {
         
        // Update current maximum
        cur_max = arr[i];
     
        // If difference exceeds K
        if (cur_max - cur_min > K)
        {
         
            // Update count
            result++;
 
            // Update maximum and minimum
            // to the current subset
            cur_max = arr[i];
            cur_min = arr[i];
        }
    }
    return result;
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 1, 10, 8, 3, 9 };
    int K = 3;
    int N = arr.Length;
     
    Console.Write(findCount(arr, N, K));
}
}
 
// This code is contributed by gauravrajput1

chevron_right


Output: 

2


 

Time Complexity: O(NLog(N))
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Recommended Posts:


Active and well versed member of Competitive Programming

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.