Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Minimize cost to reach end of an array by two forward jumps or one backward jump in each move

  • Difficulty Level : Hard
  • Last Updated : 27 Apr, 2021

Given an array arr[] consisting of N positive integers, the task is to find the minimum cost required to either cross the array or reach the end of the array by only moving to indices (i + 2) and (i – 1) from the ith index.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {5, 1, 2, 10, 100}
Output: 18
Explanation:
Optimal cost path (0 based indexing): 0 → 2 → 1 → 3 → 5
Therefore, the minimum cost = 5 + 2 + 1 + 10 = 18.



Input: arr[] = {9, 4, 6, 8, 5}
Output: 20
Explanation:
Optimal cost path (0 based indexing): 0 → 2 → 4
Therefore, the minimum cost = 9 + 6 + 5 = 20

Naive Approach: The given problem can be solved based on the following observations:

  • Since all costs are positive, it will never be an optimal option to move more than one step backward, hence to reach a particular index i of the array, either jump directly from the (i – 2)th index or jump from (i – 1)th to (i + 1)th index, i.e. (2 jumps forward), followed by 1 backward jump, i.e. from (i + 1)th index to ith index.
  • Now, traverse from the end of the array recursively and for the elements at indices (i – 2) and (i – 1), calculate the minimum cost of the two. Therefore, the minimum cost to cross the array can be calculated using the following recurrence relation:

minCost(index) = minimum(minCost(index – 2) + arr[i], minCost(index – 1) + arr[i] + arr[i + 1])

Time Complexity: O(2N)
Auxiliary Space: O(1)

Efficient Approach: The approach discussed above has both Optimal Substructure and Overlapping Subproblems. Therefore it can be optimized by either using Memoization or Tabulation. Follow the steps below to solve the problem:

  • Initialize an array dp[], where dp[i] stores the minimum cost to reach the ith index.
  • Initialize dp[0] = arr[0] as the cost to reach the 0th index, which is equal to the value at the 0th index itself. Update dp[1] = arr[0] + arr[1] + arr[2], as to reach the 1st index, jump from the 0th index to 2nd index indexn to the 1st index.
  • Iterate over the range [2, N – 2] using a variable i and update dp[i] as the minimum of (dp[i – 2] + arr[i]) and (dp[i – 1] + arr[i] + arr[i + 1]).
  • For the last index (N – 1), update dp[N – 1] as minimum of (dp[N – 3] + arr[N – 1]) and (dp[N – 2]).
  • After completing the above steps, print the value of dp[N – 1] as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum cost
// to reach the end of an array
void minCost(int arr[], int n)
{
    // Base Case: When N < 3
    if (n < 3) {
        cout << arr[0];
        return;
    }
 
    // Store the results in table
    int* dp = new int[n];
 
    // Initialize base cases
    dp[0] = arr[0];
    dp[1] = dp[0] + arr[1] + arr[2];
 
    // Iterate over the range[2, N - 2]
    // to construct the dp array
    for (int i = 2; i < n - 1; i++)
        dp[i] = min(dp[i - 2] + arr[i],
                    dp[i - 1] + arr[i]
                        + arr[i + 1]);
 
    // Handle case for the last index, i.e. N - 1
    dp[n - 1] = min(dp[n - 2],
                    dp[n - 3] + arr[n - 1]);
 
    // Print the answer
    cout << dp[n - 1];
}
 
// Driver Code
int main()
{
    int arr[] = { 9, 4, 6, 8, 5 };
    int N = sizeof(arr) / sizeof(arr[0]);
    minCost(arr, N);
 
    return 0;
}

Java




// Java Program to implement
// the above approach
import java.io.*;
import java.util.*;
 
class GFG
{
 
    // Function to find the minimum cost
    // to reach the end of an array
    static void minCost(int arr[], int n)
    {
       
        // Base Case: When N < 3
        if (n < 3) {
            System.out.println(arr[0]);
            return;
        }
 
        // Store the results in table
        int dp[] = new int[n];
 
        // Initialize base cases
        dp[0] = arr[0];
        dp[1] = dp[0] + arr[1] + arr[2];
 
        // Iterate over the range[2, N - 2]
        // to construct the dp array
        for (int i = 2; i < n - 1; i++)
            dp[i] = Math.min(dp[i - 2] + arr[i],
                           dp[i - 1] + arr[i] + arr[i + 1]);
 
        // Handle case for the last index, i.e. N - 1
        dp[n - 1] = Math.min(dp[n - 2], dp[n - 3] + arr[n - 1]);
 
        // Print the answer
        System.out.println(dp[n - 1]);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 9, 4, 6, 8, 5 };
        int N = arr.length;
        minCost(arr, N);
    }
}
 
// This code is contributed by Kingash.

Python3




# Python 3 program for the above approach
 
# Function to find the minimum cost
# to reach the end of an array
def minCost(arr, n):
 
    # Base Case: When N < 3
    if (n < 3):
        print(arr[0])
        return
 
    # Store the results in table
    dp = [0] * n
 
    # Initialize base cases
    dp[0] = arr[0]
    dp[1] = dp[0] + arr[1] + arr[2]
 
    # Iterate over the range[2, N - 2]
    # to construct the dp array
    for i in range(2, n - 1):
        dp[i] = min(dp[i - 2] + arr[i],
                    dp[i - 1] + arr[i]
                    + arr[i + 1])
 
    # Handle case for the last index, i.e. N - 1
    dp[n - 1] = min(dp[n - 2],
                    dp[n - 3] + arr[n - 1])
 
    # Print the answer
    print(dp[n - 1])
 
# Driver Code
if __name__ == "__main__":
 
    arr = [9, 4, 6, 8, 5]
    N = len(arr)
    minCost(arr, N)
 
    # This code is contributed by ukasp.

C#




// C# Program to implement
// the above approach
using System;
public class GFG
{
 
  // Function to find the minimum cost
  // to reach the end of an array
  static void minCost(int []arr, int n)
  {
 
    // Base Case: When N < 3
    if (n < 3) {
      Console.WriteLine(arr[0]);
      return;
    }
 
    // Store the results in table
    int []dp = new int[n];
 
    // Initialize base cases
    dp[0] = arr[0];
    dp[1] = dp[0] + arr[1] + arr[2];
 
    // Iterate over the range[2, N - 2]
    // to construct the dp array
    for (int i = 2; i < n - 1; i++)
      dp[i] = Math.Min(dp[i - 2] + arr[i],
                       dp[i - 1] + arr[i] + arr[i + 1]);
 
    // Handle case for the last index, i.e. N - 1
    dp[n - 1] = Math.Min(dp[n - 2], dp[n - 3] + arr[n - 1]);
 
    // Print the answer
    Console.WriteLine(dp[n - 1]);
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
    int []arr = { 9, 4, 6, 8, 5 };
    int N = arr.Length;
    minCost(arr, N);
  }
}
 
// This code is contributed by AnkThon

Javascript




<script>
 
// Javascript program for the above approach
 
    // Function to find the minimum cost
    // to reach the end of an array
    function minCost(arr, n)
    {
        
        // Base Case: When N < 3
        if (n < 3) {
            document.write(arr[0]);
            return;
        }
  
        // Store the results in table
        let dp = [];
  
        // Initialize base cases
        dp[0] = arr[0];
        dp[1] = dp[0] + arr[1] + arr[2];
  
        // Iterate over the range[2, N - 2]
        // to construct the dp array
        for (let i = 2; i < n - 1; i++)
            dp[i] = Math.min(dp[i - 2] + arr[i],
                           dp[i - 1] + arr[i] + arr[i + 1]);
  
        // Handle case for the last index, i.e. N - 1
        dp[n - 1] = Math.min(dp[n - 2], dp[n - 3] + arr[n - 1]);
  
        // Prlet the answer
        document.write(dp[n - 1]);
    }
 
// Driver Code
 
        let arr = [ 9, 4, 6, 8, 5 ];
        let N = arr.length;
        minCost(arr, N);
 
</script>
Output: 
20

 

Time Complexity: O(N)
Auxiliary Space: O(N)




My Personal Notes arrow_drop_up
Recommended Articles
Page :