Minimize cost to convert given two integers to zero using given operations

Given two integers X and Y, and two values cost1 and cost2, the task is to convert the given two numbers equal to zero at minimal cost by performing the following two types of operations:

  • Increase or decrease any one of them by 1 at cost1.
  • Increase or decrease both of them by 1 at cost2.

Examples:

Input: X = 1, Y = 3, cost1 = 391, cost2 = 555
Output: 1337
Explanation:
Reduce Y to 1 using the first operation twice and convert both X and Y from 1 to 0 using the second operation.
Hence, the total cost = 391 * 2 + 555 = 1337.

Input: X = 12, Y = 7, cost1 = 12, cost2 = 7
Output: 4
Explanation:
Reduce X to 7 using first operation and then convert both X and Y to 0 using the second operation.
Hence, the total cost = 12 * 5 + 7 * 7 = 109

Approach:
The most optimal way to solve the problem is:



  • Reduce the maximum of X and Y to the minimum by using first operation. This increases the cost by abs(X – Y) * cost1.
  • Then, reduce both X and Y to 0 using the second operation. This increase the cost by minimum of (X, Y) * cost2.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to find the minimum
// cost to make the two integers equal
// to zero using given operations
#include <bits/stdc++.h> 
using namespace std; 
  
// Function to find out the minimum cost to 
// make two number X and Y equal to zero
int makeZero(int x, int y, int a, int b)
{
      
    // If x is greater than y then swap
    if(x > y)
       x = y, 
       y = x;
      
    // Cost of making y equal to x 
    int tot_cost = (y - x) * a;
  
    // Cost if we choose 1st operation
    int cost1 = 2 * x * a;
      
    // Cost if we choose 2nd operation
    int cost2 = x * b;
      
    // Total cost
    tot_cost += min(cost1, cost2);
      
    cout << tot_cost;
}
  
// Driver code 
int main() 
    int X = 1, Y = 3;
    int cost1 = 391, cost2 = 555;
  
    makeZero(X, Y, cost1, cost2);
  
// This code is contributed by coder001

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to find the minimum
// cost to make the two integers equal
// to zero using given operations
import java.util.*;
class GFG{
      
// Function to find out the minimum cost to 
// make two number X and Y equal to zero
static void makeZero(int x, int y, int a, int b)
{
      
    // If x is greater than y then swap
    if(x > y)
    {
        int temp = x;
        x = y;
        y = temp;
    }
      
    // Cost of making y equal to x 
    int tot_cost = (y - x) * a;
  
    // Cost if we choose 1st operation
    int cost1 = 2 * x * a;
      
    // Cost if we choose 2nd operation
    int cost2 = x * b;
      
    // Total cost
    tot_cost += Math.min(cost1, cost2);
      
    System.out.print(tot_cost);
}
  
// Driver code 
public static void main(String args[]) 
    int X = 1, Y = 3;
    int cost1 = 391, cost2 = 555;
  
    makeZero(X, Y, cost1, cost2);
}
  
// This code is contributed by Code_Mech

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to find the
# minimum cost to make the two integers
# equal to zero using given operations
  
  
# Function to find out the minimum cost to make
# two number X and Y equal to zero
def makeZero(x, y, a, b):
      
    # If x is greater than y then swap
    if(x > y):
        x, y = y, x
      
    # Cost of making y equal to x 
    tot_cost = (y - x) * a
  
    # Cost if we choose 1st operation
    cost1 = 2 * x * a
      
    # Cost if we choose 2nd operation
    cost2 = x * b
      
    # Total cost
    tot_cost+= min(cost1, cost2)
      
    print(tot_cost)
      
  
if __name__ =="__main__":
      
    X, Y = 1, 3
  
    cost1, cost2 = 391, 555
  
    makeZero(X, Y, cost1, cost2)
     

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to find the minimum
// cost to make the two integers equal
// to zero using given operations
using System;
  
class GFG{
      
// Function to find out the minimum cost to 
// make two number X and Y equal to zero
static void makeZero(int x, int y, int a, int b)
{
      
    // If x is greater than y then swap
    if(x > y)
    {
        int temp = x;
        x = y;
        y = temp;
    }
      
    // Cost of making y equal to x 
    int tot_cost = (y - x) * a;
  
    // Cost if we choose 1st operation
    int cost1 = 2 * x * a;
      
    // Cost if we choose 2nd operation
    int cost2 = x * b;
      
    // Total cost
    tot_cost += Math.Min(cost1, cost2);
      
    Console.Write(tot_cost);
}
  
// Driver code 
public static void Main() 
    int X = 1, Y = 3;
    int cost1 = 391, cost2 = 555;
  
    makeZero(X, Y, cost1, cost2);
}
  
// This code is contributed by Code_Mech

chevron_right


Output:

1337

Time Complexity: O(1)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : coder001, Code_Mech, nidhi_biet

Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.