Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Minimize cost required to make all array elements greater than or equal to zero

  • Last Updated : 15 Nov, 2021

Given an array arr[] consisting of N integers and an integer X, the task is to find the minimum cost required to make all array elements greater than or equal to 0 by performing the following operations any number of times:

  • Increase any array element by 1. Cost = 1.
  • Increase all array elements by 1. Cost = X.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {-1, -3, 3, 4, 5}, X = 2
Output: 4
Explanation:
Increment arr[0] by 1. The array arr[] modifies to {0, -3, 3, 4, 5}. Cost = 1.
Increment arr[1] by 1 thrice. The array arr[] modifies to {0, 0, 3, 4, 5}. Therefore, Cost = 4.
Hence, the total cost required is 4.



Input: arr[] = {-3, -2, -1, -5, 7}, X = 2
Output: 8   

Approach: The idea is to use Greedy Approach to solve the problem. Follow the steps below to solve the problem:

  • Sort the array arr[] in ascending order.
  • Initialize an auxiliary vector, say list, to store the negative array elements.
  • Initialize a variable, cost = 0, to store the cost required to make the current array element  0 and another variable, min_cost = INT_MAX, to store the final minimum cost to make all array elements >= 0.
  • Traverse the array arr[] and try to convert all the array elements in the list >= 0 by applying the suitable operations and update min_cost accordingly.
  • Print the value of min_cost as the answer.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum
// cost to make all array elements
// greater than or equal to 0
void minCost(int arr[], int N, int X)
{
    // Sort the array in
    // ascending order
    sort(arr, arr + N);
 
    int sum = 0;
 
    // Stores the cost to make
    // current array element >= 0
    int cost = 0;
 
    // Stores the cost to make
    // all array elements >= 0
    int min_cost = INT_MAX;
 
    // Traverse the array and insert all the
    // elements which are < 0
    for (int i = 0; i < N; i++) {
 
        // If current array element
        // is negative
        if (arr[i] < 0) {
 
            // Cost to make all array
            // elements >= 0
            cost = abs(arr[i]) * X
                   + (sum - abs(arr[i]) * i);
            sum += abs(arr[i]);
 
            // Update curr if ans is minimum
            min_cost = min(min_cost, cost);
        }
    }
 
    // Print the minimum cost
    cout << min_cost;
}
 
// Driver Code
int main()
{
    // Given array
    int arr[] = { -1, -3, -2, 4, -1 };
 
    // Size of the array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Given value of X
    int X = 2;
 
    // Function call to find minimum
    // cost to make all array elements >= 0
    minCost(arr, N, X);
 
    return 0;
}

Java




// Java program for the above approach
import java.util.Arrays;
public class GFG
{   
 
  // Function to find the minimum
  // cost to make all array elements
  // greater than or equal to 0
  static void minCost(int arr[], int N, int X)
  {
 
    // Sort the array in
    // ascending order
    Arrays.sort(arr) ;
 
    int sum = 0;
 
    // Stores the cost to make
    // current array element >= 0
    int cost = 0;
 
    int INT_MAX = Integer.MAX_VALUE;
 
    // Stores the cost to make
    // all array elements >= 0
    int min_cost = INT_MAX;
 
    // Traverse the array and insert all the
    // elements which are < 0
    for (int i = 0; i < N; i++) {
 
      // If current array element
      // is negative
      if (arr[i] < 0) {
 
        // Cost to make all array
        // elements >= 0
        cost = Math.abs(arr[i]) * X
          + (sum - Math.abs(arr[i]) * i);
        sum += Math.abs(arr[i]);
 
        // Update curr if ans is minimum
        min_cost = Math.min(min_cost, cost);
      }
    }
 
    // Print the minimum cost
    System.out.print(min_cost);
  }
 
  // Driver Code
  public static void main (String[] args)
  {
 
    // Given array
    int arr[] = { -1, -3, -2, 4, -1 };
 
    // Size of the array
    int N = arr.length;
 
    // Given value of X
    int X = 2;
 
    // Function call to find minimum
    // cost to make all array elements >= 0
    minCost(arr, N, X);
 
  }
 
}
 
// This code is contributed by AnkThon

Python3




# Python3 program for the above approach
import sys
 
# Function to find the minimum
# cost to make all array of elements
# greater than or equal to 0
def mincost(arr, N, X):
   
    # sort the array in
    # ascending order
    arr.sort()
    sum = 0
     
    # stores the count to make
    # current array element >=0
    cost = 0
     
    # stores the cost to make
    # all array elements >=0
    min_cost = sys.maxsize
     
    # Traverse the array and insert all the
    # elements which are <=0
    for i in range(0, N):
       
        # if current array element
        # is negative
        if (arr[i] < 0):
           
            # cost to make all array
            # elements >=0
            cost = abs(arr[i]) * x + (sum - abs(arr[i]) * i)
            sum += abs(arr[i])
             
            # update curr if ans is minimum
            min_cost = min(min_cost,cost)
     
    # return minimum cost
    return min_cost
 
# Driver code
arr = [-1, -3, -2, 4, -1]
 
# size of the array
N = len(arr)
 
# Given value of x
x = 2
 
# Function call to find minimum
# cost to make all array elements >=0
print(mincost(arr, N, x))
 
# This code is contributed by Virusbuddah

C#




// C# program for the above approach
using System;
class GFG{
 
// Function to find the minimum
// cost to make all array elements
// greater than or equal to 0
static void minCost(int[] arr, int N, int X)
{
 
    // Sort the array in
    // ascending order
    Array.Sort(arr) ;
     
    int sum = 0;
     
    // Stores the cost to make
    // current array element >= 0
    int cost = 0;
     
    //int INT_MAX = Int32.MaxValue;
     
    // Stores the cost to make
    // all array elements >= 0
    int min_cost = Int32.MaxValue;
     
    // Traverse the array and insert all the
    // elements which are < 0
    for(int i = 0; i < N; i++)
    {
     
        // If current array element
        // is negative
        if (arr[i] < 0)
        {
         
            // Cost to make all array
            // elements >= 0
            cost = Math.Abs(arr[i]) * X + 
            (sum - Math.Abs(arr[i]) * i);
            sum += Math.Abs(arr[i]);
             
            // Update curr if ans is minimum
            min_cost = Math.Min(min_cost, cost);
        }
    }
     
    // Print the minimum cost
    Console.Write(min_cost);
}
 
// Driver Code
static public void Main ()
{
     
    // Given array
    int[] arr = { -1, -3, -2, 4, -1 };
 
    // Size of the array
    int N = arr.Length;
 
    // Given value of X
    int X = 2;
 
    // Function call to find minimum
    // cost to make all array elements >= 0
    minCost(arr, N, X);
}
}
 
// This code is contributed by susmitakundugoaldanga

Javascript




<script>
// javascript program for the above approach
 
  // Function to find the minimum
  // cost to make all array elements
  // greater than or equal to 0
  function minCost(arr , N , X)
  {
 
    // Sort the array in
    // ascending order
    arr.sort() ;
 
    var sum = 0;
 
    // Stores the cost to make
    // current array element >= 0
    var cost = 0;
 
    var INT_MAX = Number.MAX_VALUE;
 
    // Stores the cost to make
    // all array elements >= 0
    var min_cost = INT_MAX;
 
    // Traverse the array and insert all the
    // elements which are < 0
    for (i = 0; i < N; i++) {
 
      // If current array element
      // is negative
      if (arr[i] < 0) {
 
        // Cost to make all array
        // elements >= 0
        cost = Math.abs(arr[i]) * X
          + (sum - Math.abs(arr[i]) * i);
        sum += Math.abs(arr[i]);
 
        // Update curr if ans is minimum
        min_cost = Math.min(min_cost, cost);
      }
    }
 
    // Print the minimum cost
    document.write(min_cost);
  }
 
  // Driver Code
//Given array
  var arr = [ -1, -3, -2, 4, -1 ];
 
  // Size of the array
  var N = arr.length;
 
  // Given value of X
  var X = 2;
 
  // Function call to find minimum
  // cost to make all array elements >= 0
  minCost(arr, N, X);
 
// This code is contributed by 29AjayKumar
</script>
Output: 
5

 

Time Complexity: O(N * logN)
Auxiliary Space: O(1)

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!