Minimize cost of increments or decrements such that same indexed elements become multiple of each other
Given two arrays A[] and B[] consisting of N integers, the task is to minimize the total cost of incrementing or decrementing array elements by 1 such that for every ith element, either A[i] is a multiple of B[i] or vice-versa.
Examples:
Input: A[] = {3, 6, 3}, B[] = {4, 8, 13}
Output: 4
Explanation:
Incrementing A[0] by 1 (3 + 1 = 4) makes it multiple of B[0](= 4).
Incrementing A[1] by 2 (6 + 2 = 8) makes it a multiple of B[1](= 8).
Decrementing B[2] by 1 (13 – 1 = 12) makes it a multiple of A[2](= 3).
Therefore, the total cost = 1 + 2 + 1 = 4.Input: A[] = {13, 2, 31, 7}, B[] = {6, 8, 11, 3}
Output: 4
Approach: The given problem can be solved greedily. Follow the steps below to solve the problem:
- Initialize a variable, say cost, to store the required minimum cost.
- Traverse both the arrays A[] and B[] simultaneously and perform the following steps:
- Case 1: Find the cost to update A[i] to make it a multiple of B[i], which is the minimum of (B[i] % A[i]) and (A[i] – B[i] % A[i]).
- Case 2: Find the cost to update B[i] to make it a multiple of A[i], which is the minimum of (A[i] % B[i]) and (B[i] – A[i] % B[i]).
- Add the minimum of the above two costs to the variable cost for each array element.
- After completing the above steps, print the value of cost as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the minimum cost to // make A[i] multiple of B[i] or // vice-versa for every array element int MinimumCost( int A[], int B[], int N) { // Stores the minimum cost int totalCost = 0; // Traverse the array for ( int i = 0; i < N; i++) { // Case 1: Update A[i] int mod_A = B[i] % A[i]; int totalCost_A = min(mod_A, A[i] - mod_A); // Case 2: Update B[i] int mod_B = A[i] % B[i]; int totalCost_B = min(mod_B, B[i] - mod_B); // Add the minimum of // the above two cases totalCost += min(totalCost_A, totalCost_B); } // Return the resultant cost return totalCost; } // Driver Code int main() { int A[] = { 3, 6, 3 }; int B[] = { 4, 8, 13 }; int N = sizeof (A) / sizeof (A[0]); cout << MinimumCost(A, B, N); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG{ // Function to find the minimum cost to // make A[i] multiple of B[i] or // vice-versa for every array element static int MinimumCost( int A[], int B[], int N) { // Stores the minimum cost int totalCost = 0 ; // Traverse the array for ( int i = 0 ; i < N; i++) { // Case 1: Update A[i] int mod_A = B[i] % A[i]; int totalCost_A = Math.min(mod_A, A[i] - mod_A); // Case 2: Update B[i] int mod_B = A[i] % B[i]; int totalCost_B = Math.min(mod_B, B[i] - mod_B); // Add the minimum of // the above two cases totalCost += Math.min(totalCost_A, totalCost_B); } // Return the resultant cost return totalCost; } // Driver Code public static void main(String[] args) { int A[] = { 3 , 6 , 3 }; int B[] = { 4 , 8 , 13 }; int N = A.length; System.out.print(MinimumCost(A, B, N)); } } // This code is contributed by souravmahato348 |
Python3
# Python program for the above approach # Function to find the minimum cost to # make A[i] multiple of B[i] or # vice-versa for every array element def MinimumCost(A, B, N): # Stores the minimum cost totalCost = 0 # Traverse the array for i in range (N): # Case 1: Update A[i] mod_A = B[i] % A[i] totalCost_A = min (mod_A, A[i] - mod_A) # Case 2: Update B[i] mod_B = A[i] % B[i] totalCost_B = min (mod_B, B[i] - mod_B) # Add the minimum of # the above two cases totalCost + = min (totalCost_A, totalCost_B) # Return the resultant cost return totalCost # Driver Code A = [ 3 , 6 , 3 ] B = [ 4 , 8 , 13 ] N = len (A) print (MinimumCost(A, B, N)) # This code is contributed by shubhamsingh10 |
C#
// C# program for the above approach using System; class GFG { // Function to find the minimum cost to // make A[i] multiple of B[i] or // vice-versa for every array element static int MinimumCost( int [] A, int [] B, int N) { // Stores the minimum cost int totalCost = 0; // Traverse the array for ( int i = 0; i < N; i++) { // Case 1: Update A[i] int mod_A = B[i] % A[i]; int totalCost_A = Math.Min(mod_A, A[i] - mod_A); // Case 2: Update B[i] int mod_B = A[i] % B[i]; int totalCost_B = Math.Min(mod_B, B[i] - mod_B); // Add the minimum of // the above two cases totalCost += Math.Min(totalCost_A, totalCost_B); } // Return the resultant cost return totalCost; } // Driver Code public static void Main() { int [] A = { 3, 6, 3 }; int [] B = { 4, 8, 13 }; int N = A.Length; Console.Write(MinimumCost(A, B, N)); } } // This code is contributed by rishavmahato348 |
Javascript
<script> // javascript program for the above approach // Function to find the minimum cost to // make A[i] multiple of B[i] or // vice-versa for every array element function MinimumCost(A , B , N) { // Stores the minimum cost var totalCost = 0; // Traverse the array for (i = 0; i < N; i++) { // Case 1: Update A[i] var mod_A = B[i] % A[i]; var totalCost_A = Math.min(mod_A, A[i] - mod_A); // Case 2: Update B[i] var mod_B = A[i] % B[i]; var totalCost_B = Math.min(mod_B, B[i] - mod_B); // Add the minimum of // the above two cases totalCost += Math.min(totalCost_A, totalCost_B); } // Return the resultant cost return totalCost; } // Driver Code var A = [ 3, 6, 3 ]; var B = [ 4, 8, 13 ]; var N = A.length; document.write(MinimumCost(A, B, N)); // This code contributed by aashish1995 </script> |
4
Time Complexity: O(N)
Auxiliary Space: O(1)