Skip to content
Related Articles

Related Articles

Improve Article

Minimize array sum by replacing greater and smaller elements of pairs by half and double of their values respectively atmost K times

  • Last Updated : 02 Jun, 2021

Given an array arr[] consisting of N positive integers and an integer K, the task is to find the minimum possible array sum that can be obtained by repeatedly selecting a pair from the given array and divide one of the elements by 2 and multiply the other element by 2, at most K times.

Examples:

Input: arr[] = {5, 1, 10, 2, 3}, K = 1 
Output: 17 
Explanation:Since K = 1, the only operation is to update arr[1] = arr[1] * 2 and arr[2] = arr[2] / 2, which modifies arr[] = {5, 2, 5, 2, 3}. Therefore, the minimum possible sum of the array that can be obtained = 17.

Input: arr[] = {50, 1, 100, 100, 1}, K = 2 
Output: 154 
Explanation: 
Operation 1: Updating arr[1] = arr[1] * 2 and arr[3] = arr[3] / 2 modifies arr[] = {50, 2, 100, 50, 1}. 
Operation 2: Updating arr[4] = arr[4] * 2 and arr[2] = arr[2] / 2 modifies arr[] = {50, 2, 50, 50, 2}. 
Therefore, the minimum possible sum of the array that can be obtained = 154.

 

Naive Approach: The simplest approach to solve the problem is to select the smallest and the largest array element for each operation and multiply the smallest array element by 2 and divide the largest array element by 2. Finally, after completing K operations, print the sum of all the array elements.



Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum sum of
// array elements by given operations
int minimum_possible_sum(int arr[],
                         int n, int k)
{
 
    // Base case
    if (n == 0) {
 
        // Return 0
        return 0;
    }
 
    // Base case
    if (n == 1) {
 
        return arr[0];
    }
 
    // Perform K operations
    for (int i = 0; i < k; i++) {
 
        // Stores smallest element
        // in the array
        int smallest_element
            = arr[0];
 
        // Stores index of the
        // smallest array element
        int smallest_pos = 0;
 
        // Stores largest element
        // in the array
        int largest_element = arr[0];
 
        // Stores index of the
        // largest array element
        int largest_pos = 0;
 
        // Traverse the array elements
        for (int i = 1; i < n; i++) {
 
            // If current element
            // exceeds largest_element
            if (arr[i] >= largest_element) {
 
                // Update the largest element
                largest_element = arr[i];
 
                // Update index of the
                // largest array element
                largest_pos = i;
            }
 
            // If current element is
            // smaller than smallest_element
            if (arr[i] < smallest_element) {
 
                // Update the smallest element
                smallest_element = arr[i];
 
                // Update index of the
                // smallest array element
                smallest_pos = i;
            }
        }
 
        // Stores the value of smallest
        // element by given operations
        int a = smallest_element * 2;
 
        // Stores the value of largest
        // element by given operations
        int b = largest_element / 2;
 
        // If the value of a + b less than
        // the sum of smallest and
        // largest element of the array
        if (a + b < smallest_element
                        + largest_element) {
 
            // Update smallest element
            // of the array
            arr[smallest_pos] = a;
 
            // Update largest element
            // of the array
            arr[largest_pos] = b;
        }
    }
 
    // Stores sum of elements of
    // the array by given operations
    int ans = 0;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // Update ans
        ans += arr[i];
    }
 
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 50, 1, 100, 100, 1 };
 
    int K = 2;
 
    int n = sizeof(arr)
            / sizeof(arr[0]);
    cout << minimum_possible_sum(
        arr, n, K);
 
    return 0;
}

Java




// Java program to implement
// the above approach
import java.util.*;
   
class GFG{
   
// Function to find the minimum sum of
// array elements by given operations
static int minimum_possible_sum(int arr[],
                                int n, int k)
{
     
    // Base case
    if (n == 0)
    {
         
        // Return 0
        return 0;
    }
  
    // Base case
    if (n == 1)
    {
        return arr[0];
    }
  
    // Perform K operations
    for(int i = 0; i < k; i++)
    {
         
        // Stores smallest element
        // in the array
        int smallest_element = arr[0];
  
        // Stores index of the
        // smallest array element
        int smallest_pos = 0;
  
        // Stores largest element
        // in the array
        int largest_element = arr[0];
  
        // Stores index of the
        // largest array element
        int largest_pos = 0;
  
        // Traverse the array elements
        for(int j = 1; j < n; j++)
        {
             
            // If current element
            // exceeds largest_element
            if (arr[j] >= largest_element)
            {
                 
                // Update the largest element
                largest_element = arr[j];
  
                // Update index of the
                // largest array element
                largest_pos = j;
            }
  
            // If current element is
            // smaller than smallest_element
            if (arr[j] < smallest_element)
            {
                 
                // Update the smallest element
                smallest_element = arr[j];
  
                // Update index of the
                // smallest array element
                smallest_pos = j;
            }
        }
  
        // Stores the value of smallest
        // element by given operations
        int a = smallest_element * 2;
  
        // Stores the value of largest
        // element by given operations
        int b = largest_element / 2;
  
        // If the value of a + b less than
        // the sum of smallest and
        // largest element of the array
        if (a + b < smallest_element +
                     largest_element)
        {
             
            // Update smallest element
            // of the array
            arr[smallest_pos] = a;
  
            // Update largest element
            // of the array
            arr[largest_pos] = b;
        }
    }
  
    // Stores sum of elements of
    // the array by given operations
    int ans = 0;
  
    // Traverse the array
    for(int i = 0; i < n; i++)
    {
         
        // Update ans
        ans += arr[i];
    }
    return ans;
}
  
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 50, 1, 100, 100, 1 };
    int K = 2;
    int n = arr.length;
     
    System.out.print(minimum_possible_sum(
                            arr, n, K));
}
}
 
// This code is contributed by susmitakundugoaldanga

Python3




# Python3 program to implement
# the above approach
 
# Function to find the minimum
# sum of array elements by
# given operations
def minimum_possible_sum(arr, n, k):
 
    # Base case
    if (n == 0):
       
        # Return 0
        return 0
 
    # Base case
    if (n == 1):
        return arr[0]
 
    # Perform K operations
    for i in range(k):
 
        # Stores smallest element
        # in the array
        smallest_element = arr[0]
 
        # Stores index of the
        # smallest array element
        smallest_pos = 0
 
        # Stores largest element
        # in the array
        largest_element = arr[0]
 
        # Stores index of the
        # largest array element
        largest_pos = 0
 
        # Traverse the array
        # elements
        for i in range(1, n):
 
            # If current element
            # exceeds largest_element
            if (arr[i] >=
                largest_element):
 
                # Update the largest
                # element
                largest_element = arr[i]
 
                # Update index of the
                # largest array element
                largest_pos = i
 
            # If current element is
            # smaller than smallest_element
            if (arr[i] <
                smallest_element):
 
                # Update the smallest element
                smallest_element = arr[i]
 
                # Update index of the
                # smallest array element
                smallest_pos = i
 
        # Stores the value of smallest
        # element by given operations
        a = smallest_element * 2
 
        # Stores the value of largest
        # element by given operations
        b = largest_element // 2
 
        # If the value of a + b less
        # than the sum of smallest and
        # largest element of the array
        if (a + b < smallest_element +
            largest_element):
 
            # Update smallest element
            # of the array
            arr[smallest_pos] = a
 
            # Update largest element
            # of the array
            arr[largest_pos] = b
 
    # Stores sum of elements of
    # the array by given operations
    ans = 0
 
    # Traverse the array
    for i in range(n):
       
        # Update ans
        ans += arr[i]
 
    return ans
 
# Driver Code
if __name__ == '__main__':
   
    arr = [50, 1, 100, 100, 1]
    K = 2
    n = len(arr)
    print(minimum_possible_sum(arr, n, K))
 
# This code is contributed by Mohit Kumar 29

C#




// C# program to implement
// the above approach 
using System;
    
class GFG{
    
// Function to find the minimum sum of
// array elements by given operations
static int minimum_possible_sum(int[] arr,
                                int n, int k)
{
   
    // Base case
    if (n == 0)
    {
          
        // Return 0
        return 0;
    }
   
    // Base case
    if (n == 1)
    {
        return arr[0];
    }
   
    // Perform K operations
    for(int i = 0; i < k; i++)
    {
          
        // Stores smallest element
        // in the array
        int smallest_element = arr[0];
   
        // Stores index of the
        // smallest array element
        int smallest_pos = 0;
   
        // Stores largest element
        // in the array
        int largest_element = arr[0];
   
        // Stores index of the
        // largest array element
        int largest_pos = 0;
   
        // Traverse the array elements
        for(int j = 1; j < n; j++)
        {
              
            // If current element
            // exceeds largest_element
            if (arr[j] >= largest_element)
            {
                  
                // Update the largest element
                largest_element = arr[j];
   
                // Update index of the
                // largest array element
                largest_pos = j;
            }
   
            // If current element is
            // smaller than smallest_element
            if (arr[j] < smallest_element)
            {
                  
                // Update the smallest element
                smallest_element = arr[j];
   
                // Update index of the
                // smallest array element
                smallest_pos = j;
            }
        }
   
        // Stores the value of smallest
        // element by given operations
        int a = smallest_element * 2;
   
        // Stores the value of largest
        // element by given operations
        int b = largest_element / 2;
   
        // If the value of a + b less than
        // the sum of smallest and
        // largest element of the array
        if (a + b < smallest_element +
                     largest_element)
        {
              
            // Update smallest element
            // of the array
            arr[smallest_pos] = a;
   
            // Update largest element
            // of the array
            arr[largest_pos] = b;
        }
    }
   
    // Stores sum of elements of
    // the array by given operations
    int ans = 0;
   
    // Traverse the array
    for(int i = 0; i < n; i++)
    {
          
        // Update ans
        ans += arr[i];
    }
    return ans;
}
   
// Driver Code
public static void Main()
{
    int[] arr = { 50, 1, 100, 100, 1 };
    int K = 2;
    int n = arr.Length;
      
    Console.WriteLine(minimum_possible_sum(
                            arr, n, K));
}
}
 
// This code is contributed by sanjoy_62

Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find the minimum sum of
// array elements by given operations
function minimum_possible_sum(arr, n, k)
{
      
    // Base case
    if (n == 0)
    {
          
        // Return 0
        return 0;
    }
   
    // Base case
    if (n == 1)
    {
        return arr[0];
    }
   
    // Perform K operations
    for(let i = 0; i < k; i++)
    {
          
        // Stores smallest element
        // in the array
        let smallest_element = arr[0];
   
        // Stores index of the
        // smallest array element
        let smallest_pos = 0;
   
        // Stores largest element
        // in the array
        let largest_element = arr[0];
   
        // Stores index of the
        // largest array element
        let largest_pos = 0;
   
        // Traverse the array elements
        for(let j = 1; j < n; j++)
        {
              
            // If current element
            // exceeds largest_element
            if (arr[j] >= largest_element)
            {
                  
                // Update the largest element
                largest_element = arr[j];
   
                // Update index of the
                // largest array element
                largest_pos = j;
            }
   
            // If current element is
            // smaller than smallest_element
            if (arr[j] < smallest_element)
            {
                  
                // Update the smallest element
                smallest_element = arr[j];
   
                // Update index of the
                // smallest array element
                smallest_pos = j;
            }
        }
   
        // Stores the value of smallest
        // element by given operations
        let a = smallest_element * 2;
   
        // Stores the value of largest
        // element by given operations
        let b = largest_element / 2;
   
        // If the value of a + b less than
        // the sum of smallest and
        // largest element of the array
        if (a + b < smallest_element +
                     largest_element)
        {
              
            // Update smallest element
            // of the array
            arr[smallest_pos] = a;
   
            // Update largest element
            // of the array
            arr[largest_pos] = b;
        }
    }
   
    // Stores sum of elements of
    // the array by given operations
    let ans = 0;
   
    // Traverse the array
    for(let i = 0; i < n; i++)
    {
          
        // Update ans
        ans += arr[i];
    }
    return ans;
}
   
 
// Driver Code
 
    let arr = [ 50, 1, 100, 100, 1 ];
    let K = 2;
    let n = arr.length;
      
    document.write(minimum_possible_sum(
                            arr, n, K));
 
</script>
Output: 
154

 

Time Complexity: O(K * N) 
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach the idea, is to use a balanced binary search tree. Follow the steps below to solve the problem:

  • Create a multiset, say ms to store all the array elements in sorted order.
  • Traverse the array and insert all array elements into ms.
  • In each operation, find the smallest element, say smallest_element and the largest element, say largest_element in ms and update the value of smallest_element = smallest_element * 2 and largest_element = largest_element / 2.
  • Finally, iterate over the multiset and print the sum of all the elements of ms.

Below is the implementation of the above approach:

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum sum of
// array elements by given operations
int minimum_possible_sum(int arr[],
                         int n, int k)
{
 
    // Base case
    if (n == 0) {
 
        // Return 0
        return 0;
    }
 
    // Base case
    if (n == 1) {
 
        return arr[0];
    }
 
    // Stores all the array elements
    // in sorted order
    multiset<int> ms;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // Insert current element
        // into multiset
        ms.insert(arr[i]);
    }
 
    // Perform each operation
    for (int i = 0; i < k; i++) {
 
        // Stores smallest element
        // of ms
        int smallest_element
            = *ms.begin();
 
        // Stores the largest element
        // of ms
        int largest_element
            = *ms.rbegin();
 
        // Stores updated value of smallest
        // element of ms by given operations
        int a = smallest_element * 2;
 
        // Stores updated value of largest
        // element of ms by given operations
        int b = largest_element / 2;
 
        // If the value of a + b less than
        // the sum of smallest and
        // largest array element
        if (a + b < smallest_element
                        + largest_element) {
 
            // Erase the smallest element
            ms.erase(ms.begin());
 
            // Erase the largest element
            ms.erase(prev(ms.end()));
 
            // Insert the updated value
            // of the smallest element
            ms.insert(a);
 
            // Insert the updated value
            // of the smallest element
            ms.insert(b);
        }
    }
 
    // Stores sum of array elements
    int ans = 0;
 
    // Traverse the multiset
    for (int x : ms) {
 
        // Update ans
        ans += x;
    }
 
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 50, 1, 100, 100, 1 };
 
    int K = 2;
 
    int n = sizeof(arr)
            / sizeof(arr[0]);
 
    cout << minimum_possible_sum(
        arr, n, K);
 
    return 0;
}

Java




// Java implementation of the above approach
import java.util.*;
 
class GFG{
 
// Function to find the minimum sum of
// array elements by given operations
static int minimum_possible_sum(int arr[],
                                int n, int k)
{
     
    // Base case
    if (n == 0)
    {
         
        // Return 0
        return 0;
    }
 
    // Base case
    if (n == 1)
    {
        return arr[0];
    }
 
    // Stores all the array elements
    // in sorted order
    Vector<Integer> ms = new Vector<>();
 
    // Traverse the array
    for(int i = 0; i < n; i++)
    {
         
        // Insert current element
        // into multiset
        ms.add(arr[i]);
    }
    Collections.sort(ms);
     
    // Perform each operation
    for(int i = 0; i < k; i++)
    {
         
        // Stores smallest element
        // of ms
        int smallest_element = ms.get(0);
 
        // Stores the largest element
        // of ms
        int largest_element = ms.get(ms.size() - 1);
     
        // Stores updated value of smallest
        // element of ms by given operations
        int a = smallest_element * 2;
 
        // Stores updated value of largest
        // element of ms by given operations
        int b = largest_element / 2;
 
        // If the value of a + b less than
        // the sum of smallest and
        // largest array element
        if (a + b < smallest_element +
                     largest_element)
        {
             
            // Erase the smallest element
            ms.remove(0);
 
            // Erase the largest element
            ms.remove(ms.size() - 1);
 
            // Insert the updated value
            // of the smallest element
            ms.add(a);
 
            // Insert the updated value
            // of the smallest element
            ms.add(b);
            Collections.sort(ms);
        }
    }
 
    // Stores sum of array elements
    int ans = 0;
 
    // Traverse the multiset
    for(int x : ms)
    {
         
        // Update ans
        ans += x;
    }
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 50, 1, 100, 100, 1 };
    int K = 2;
    int n = arr.length;
 
    System.out.print(minimum_possible_sum(
        arr, n, K));
}
}
 
// This code is contributed by Princi Singh

Python3




# Python3 implementation of the above approach
 
# Function to find the minimum sum of
# array elements by given operations
def minimum_possible_sum(arr, n, k):
     
    # Base case
    if (n == 0):
         
        # Return 0
        return 0
         
    # Base case
    if (n == 1):
        return arr[0]
 
    # Stores all the array elements
    # in sorted order
    ms = []
 
    # Traverse the array
    for i in range(n):
         
        # Insert current element
        # into multiset
        ms.append(arr[i])
 
    ms.sort()
 
    # Perform each operation
    for i in range(k):
         
        # Stores smallest element
        # of ms
        smallest_element = ms[0]
         
        # Stores the largest element
        # of ms
        largest_element = ms[-1]
         
        # Stores updated value of smallest
        # element of ms by given operations
        a = smallest_element * 2
         
        # Stores updated value of largest
        # element of ms by given operations
        b = largest_element / 2
 
        # If the value of a + b less than
        # the sum of smallest and
        # largest array element
        if (a + b < smallest_element +
                    largest_element):
             
            # Erase the smallest element
            ms.pop(0)
 
            # Erase the largest element
            ms.pop()
 
            # Insert the updated value
            # of the smallest element
            ms.append(a)
             
            # Insert the updated value
            # of the smallest element
            ms.append(b)
            ms.sort()
 
    # Stores sum of array elements
    ans = int(sum(ms))
 
    return ans
 
# Driver Code
arr = [ 50, 1, 100, 100, 1 ]
K = 2
n = len(arr)
 
print(minimum_possible_sum(arr, n, K))
 
# This code is contributed by rag2127

C#




// C# implementation of the above approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function to find the minimum sum of
// array elements by given operations
static int minimum_possible_sum(int []arr,
                                int n, int k)
{
     
    // Base case
    if (n == 0)
    {
         
        // Return 0
        return 0;
    }
 
    // Base case
    if (n == 1)
    {
        return arr[0];
    }
 
    // Stores all the array elements
    // in sorted order
    List<int> ms = new List<int>();
 
    // Traverse the array
    for(int i = 0; i < n; i++)
    {
         
        // Insert current element
        // into multiset
        ms.Add(arr[i]);
    }
    ms.Sort();
     
    // Perform each operation
    for(int i = 0; i < k; i++)
    {
         
        // Stores smallest element
        // of ms
        int smallest_element = ms[0];
 
        // Stores the largest element
        // of ms
        int largest_element = ms[ms.Count - 1];
     
        // Stores updated value of smallest
        // element of ms by given operations
        int a = smallest_element * 2;
 
        // Stores updated value of largest
        // element of ms by given operations
        int b = largest_element / 2;
 
        // If the value of a + b less than
        // the sum of smallest and
        // largest array element
        if (a + b < smallest_element +
                     largest_element)
        {
             
            // Erase the smallest element
            ms.RemoveAt(0);
 
            // Erase the largest element
            ms.RemoveAt(ms.Count - 1);
 
            // Insert the updated value
            // of the smallest element
            ms.Add(a);
 
            // Insert the updated value
            // of the smallest element
            ms.Add(b);
            ms.Sort();
        }
    }
 
    // Stores sum of array elements
    int ans = 0;
 
    // Traverse the multiset
    foreach(int x in ms)
    {
         
        // Update ans
        ans += x;
    }
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 50, 1, 100, 100, 1 };
    int K = 2;
    int n = arr.Length;
 
    Console.Write(minimum_possible_sum(
        arr, n, K));
}
}
 
// This code is contributed by shikhasingrajput

Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to find the minimum sum of
// array elements by given operations
function minimum_possible_sum(arr, n, k)
{
 
    // Base case
    if (n == 0) {
 
        // Return 0
        return 0;
    }
 
    // Base case
    if (n == 1) {
 
        return arr[0];
    }
 
    // Stores all the array elements
    // in sorted order
    var ms = [];
 
    // Traverse the array
    for (var i = 0; i < n; i++) {
 
        // Insert current element
        // into multiset
        ms.push(arr[i]);
    }
    ms.sort((a,b)=>a-b)
    // Perform each operation
    for (var i = 0; i < k; i++) {
 
        // Stores smallest element
        // of ms
        var smallest_element
            = ms[0];
 
        // Stores the largest element
        // of ms
        var largest_element
            = ms[ms.length-1];
 
        // Stores updated value of smallest
        // element of ms by given operations
        var a = smallest_element * 2;
 
        // Stores updated value of largest
        // element of ms by given operations
        var b = largest_element / 2;
 
        // If the value of a + b less than
        // the sum of smallest and
        // largest array element
        if (a + b < smallest_element
                        + largest_element) {
 
            // Erase the smallest element
            ms.shift();
 
            // Erase the largest element
            ms.pop();
 
            // Insert the updated value
            // of the smallest element
            ms.push(a);
 
            // Insert the updated value
            // of the smallest element
            ms.push(b);
            ms.sort((a,b)=>a-b)
        }
    }
 
    // Stores sum of array elements
    var ans = 0;
 
    // Traverse the multiset
    ms.forEach(x => {
         
 
        // Update ans
        ans += x;
    });
    return ans;
}
 
// Driver Code
var arr = [50, 1, 100, 100, 1];
var K = 2;
var n = arr.length;
document.write( minimum_possible_sum(
    arr, n, K));
 
// This code is contributed by noob2000.
</script>
Output: 
154

 

Time Complexity: O(K * log2N) 
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :