Minimize array length by repeatedly replacing pairs of unequal adjacent array elements by their sum

Given an integer array arr[], the task is to minimize the length of the given array by repeatedly replacing two unequal adjacent array elements by their sum. Once the array is reduced to its minimum possible length, i.e. no adjacent unequal pairs are remaining in the array, print the count of operations required. 

Examples:

Input: arr[] = {2, 1, 3, 1}
Output: 1
Explanation: 
Operation 1: {2, 1, 3, 1} -> {3, 3, 1} 
Operation 2: {3, 3, 1} -> {3, 4} 
Operation 3: {3, 4} -> {7} 
Therefore, the minimum length the array can be reduced to is 1.

Input: arr[] = {1, 1, 1, 1}
Output: 4
Explanation: 
No merge operation is possible as no unequal adjacent pair can be obtained.
Hence, the minimum length of the array is 4.

Naive Approach: The simplest approach to solve the problem is to traverse the given array and for every adjacent unequal pair, replace the pair by its sum. Finally, if no unequal pair exists in the array, print the length of the array. 
Time Complexity: O(N2)
Auxiliary Space: O(N)

Efficient Approach: The above approach can be optimized based on the following observations:



  • If all the elements of the array are equal, then no operation can be performed. Therefore, print N, i.e., the initial length of the array, as the minimum reducible length of the array
  • Otherwise, the minimum length of the array will always be 1.

Therefore, to solve the problem, simply traverse the array and check if all array elements are equal or not. If found to be true, print N as the required answer. Otherwise, print 1.
 Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for 
// the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function that returns the minimum
// length of the array after merging
// unequal adjacent elements
int minLength(int A[], int N)
{
  
    // Stores the first element
    // and its frequency
    int elem = A[0], count = 1;
  
    // Traverse the array
    for (int i = 1; i < N; i++) {
        if (A[i] == elem) {
            count++;
        }
        else {
            break;
        }
    }
  
    // If all elements are equal
    if (count == N)
  
        // No merge-pair operations
        // can be performed
        return N;
  
    // Otherwise
    else
        return 1;
}
  
// Driver Code
int main()
{
    // Given array
    int arr[] = { 2, 1, 3, 1 };
  
    // Length of the array
    int N = sizeof(arr) / sizeof(arr[0]);
  
    // Function Call
    cout << minLength(arr, N) << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for 
// the above approach
class GFG{
  
// Function that returns the minimum
// length of the array 
// after merging unequal 
// adjacent elements  
static int minLength(int A[], 
                     int N)
{
  // Stores the first element
  // and its frequency
  int elem = A[0], count = 1;
  
  // Traverse the array
  for (int i = 1; i < N; i++) 
  {
    if (A[i] == elem) 
    {
      count++;
    }
    else 
    {
      break;
    }
  }
  
  // If all elements are equal
  if (count == N)
  
    // No merge-pair operations
    // can be performed
    return N;
  
  // Otherwise
  else
    return 1;
}
  
// Driver Code
public static void main(String[] args)
{
  // Given array
  int arr[] = {2, 1, 3, 1};
  
  // Length of the array
  int N = arr.length;
  
  // Function Call
  System.out.print(minLength(arr, N) + "\n");
}
}
  
// This code is contributed by Rajput-Ji

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
  
# Function that returns the minimum
# length of the array after merging
# unequal adjacent elements
def minLength(A, N):
  
    # Stores the first element
    # and its frequency
    elem = A[0]
    count = 1
  
    # Traverse the array
    for i in range(1, N):
        if (A[i] == elem):
            count += 1
        else:
            break
      
    # If all elements are equal
    if (count == N):
  
        # No merge-pair operations
        # can be performed
        return N
  
    # Otherwise
    else:
        return 1
  
# Driver Code
  
# Given array
arr = [ 2, 1, 3, 1 ]
  
# Length of the array
N = len(arr) 
  
# Function call
print(minLength(arr, N))
  
# This code is contributed by code_hunt

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for 
// the above approach
using System;
class GFG{
  
// Function that returns the minimum
// length of the array 
// after merging unequal 
// adjacent elements  
static int minLength(int []A, 
                     int N)
{
  // Stores the first element
  // and its frequency
  int elem = A[0], count = 1;
  
  // Traverse the array
  for (int i = 1; i < N; i++) 
  {
    if (A[i] == elem) 
    {
      count++;
    }
    else 
    {
      break;
    }
  }
  
  // If all elements are equal
  if (count == N)
  
    // No merge-pair operations
    // can be performed
    return N;
  
  // Otherwise
  else
    return 1;
}
  
// Driver Code
public static void Main(String[] args)
{
  // Given array
  int []arr = {2, 1, 3, 1};
  
  // Length of the array
  int N = arr.Length;
  
  // Function Call
  Console.Write(minLength(arr, N) + "\n");
}
}
  
// This code is contributed by Rajput-Ji

chevron_right


Output: 

1

Time Complexity: O(N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Recommended Posts:



If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Rajput-Ji, code_hunt